UNIVERSIDAD JOSÉ CARLOS MARIÁTEGUI

VICERRECTORADO DE INVESTIGACIÓN

FACULTAD DE INGENIERÍA Y ARQUITECTURA

CARRERA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

COMPORTAMIENTO ESTRUCTURAL DEL PAVIMENTO MEDIANTE RECUPERACIÓN ELÁSTICA UTILIZANDO DEFLEXIONES MEDIDAS CON VIGA BENKELMAN, RED VIAL MOQUEGUA MO-108 (2 KM)

PRESENTADA POR

BACHILLER ABRAHAM ISAIAS ERIQUITA MAMANI

ASESOR:

ING. RENÉ HERADIO FLORES PAURO

PARA OPTAR TÍTULO PROFESIONAL DE

INGENIERO CIVIL

MOQUEGUA - PERÚ

2021

CONTENIDO

Página de jurado	i
Dedicatoria	ii
Agradecimientos	iii
Contenido	iv
CONTENIDO DE TABLAS	ix
CONTENIDO DE FIGURAS	xviii
CONTENIDO DE ECUACIONES	xxxiii
CONTENIDO DE APÉNDICES	xxxvii
RESUMEN	xxxviii
ABSTRACT	xxxix
INTRODUCCIÓN	xl

CAPÍTULO I

PLANTEAMIENTO DE LA INVESTIGACIÓN

1.1 Descripción de la realidad del problema	1
1.2 Definición del problema	5
1.2.1 Problema general	5
1.2.2 Problemas específicos	5
1.3 Objetivos de la investigación	5
1.3.1 Objetivo general	5
1.3.2 Objetivos especificos	6
1.4 Justificación	6

1.5 Alcances y limitaciones	7
1.6 Variables	7
1.6.1 Identificación de variables	7
1.6.2 Definición de las variables	8
1.6.3 Operacionalización de variables	9
1.7 Hipótesis de la investigación	10
1.7.1 Hipótesis general	10
1.7.2 Hipótesis específicas	10

CAPÍTULO II

MARCO TEÓRICO

2.1 Antecedentes de la investigación 1	1
2.1.1 Ámbito internacional 1	11
2.1.2 Ámbito nacional 1	13
2.1.3 Ámbito local 1	16
2.2 Bases teóricas 1	17
2.3 Defenición de términos	20
2.3.1 Conponente de la estructura del camino 2	20
2.3.2 Pavimento	21
2.3.3 Propiedades físicas y mecánicas de los materiales 2	26
2.3.4 Tipos de fallas en pavimento flexibles	33
2.3.5 Métodos de evaluación estructural	37
2.3.6 Viga Benkelman	41
2.4 Análisis de capacidad estructural mediante metodología CONREVIAL 5	55

2.4.1 Recuperación elástica
2.4.2 Análisis de evaluación
2.5 Análisis de la capacidad estructural mediante metodología SHELL 66
2.5.1 Presión aplicada en la superficie del pavimento flexible
2.5.2 Principios básicos de resistencia de materiales
2.5.3 Teoría elástica de pavimento flexible
2.5.4 Teoría elástica lineal de BOUSSINESQ (1885)
2.5.5 Teoría de Donald M. BURMISTER (1943 y 1945) 109
2.5.6 Programas de análisis multicapas 123
2.5.7 Comportamiento estructural del pavimento flexible por método
SHELL

CAPÍTULO III

MÉTODO

3.1 Tipo de la investigación	34
3.2 Diseño de la investigación1	34
3.3 Población y muestra 12	34
3.3.1 Población	34
3.3.2 Tamaño de la muestra 12	34
3.4 Descripción de instrumentos para la recolección de datos1	35
3.4.1 Instrumentos 12	35
3.4.2 Ubicación geográfica de la zona de estudio14	41
3.4.3 Clasificación de la vía 14	45
3.4.4 Características geométricas de la vía a evaluar14	45

3.4.5 Tipos de suelo de fundación	147
3.4.6 Parámetros de diseño de pavimentos empleados, periodo 10 y 20 años	148
3.4.7 Diseño de mezcla asfáltica en caliente	150
3.4.8 Procedimiento para medir las deflexiones	150

CAPÍTULO IV

ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

4.1 Presentación de resultados
4.1.1 Resultados de los ensayos de las deflexiones por método
CONREVIAL 157
4.1.2 Resultados de los ensayos de propiedades físicas y mécanicas de los
materiales
4.1.3 Determinación del esfuerzo vertical y la deflexión por expresión
análitica (fórmulas), por método SHELL 176
4.1.4 Determinación del esfuerzo vertical, deformaciones y deflexiones con
programa BISAR 3.0, por método SHELL 205
4.1.5 Análisis de comportamiento de los esfuerzos, deformaciones y
deflexiones del pavimento
4.1.6 Cuenco de deflexiones
4.1.7 Recuperación elástica
4.1.8 Comportamiento de deflexiones a segumdo año de servicialidad,
método CONREVIAL
4.2 Contrastación de hipótesis
4.2.1 Contrastación de hipótesis 1

4.2.2 Contrastación de hipótesis 2	365
4.2.3 Contrastación de hipótesis 3	366
4.3 Discusión de resultados	367
4.3.1 Determinación de deflexiones	367
4.3.2 Cuenco de deflexiones	369
4.3.3 Recuperación elástica	370

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones	372
5.2 Recomendaciones	374
REFERENCIAS BIBLIOGRÁFICAS	376
APÉNDICE	386
MATRIZ DE CONSISTENCIA	453
INSTRUMENTOS DE RECOLECCIÓN DE DATOS	455

CONTENIDO DE TABLAS

Tabla 1. Operacionalización de variables 9
Tabla 2. Requerimientos granulométricos para base granular
Tabla 3. Distancias indicadas de acuerdo al ancho del carril
Tabla 4. Factores de corrección por estacionalidad 58
Tabla 5. Valor de "t" y probabilidad de ocurrencia de D>D _c 63
Tabla 6. Características del pavimento de acuerdo al tipo de deflexión y
radio curvatura 65
Tabla 7. Características de ruedas típicas de los vehículos comerciales
Tabla 8. Valores típicos de coeficiente de poisson de materiales que
forma un pavimento
Tabla 9. Resultados para grupo Marshall 50 g/c
Tabla 10. Resultados para grupo Marshall 75 g/c
Tabla 11. Resultados para grupo Marshall 100 g/c
Tabla 12. Variación de I _z para varios valores r/z 100
Tabla 13. Ubicación geográfica 142
Tabla 14. Descripción geométrica de la via 145
Tabla 15. Resumen de la totalidad de los suelos
Tabla 16. Parámetros de diseño de pavimento
Tabla 17. Resumen de resultados de mezcla asfáltica MAC-2 150
Tabla 18. Formato de toma de datos In situ 155
Tabla 19. Unidades de muestra 155
Tabla 20. Lecturas según distancia 156

Tabla 21. Deflexiones 156
Tabla 22. Deflexiones corregidas por temperatura 156
Tabla 23. Evaluación de los parámetros
Tabla 24. Resumen de resultados de ensayo de deflexión
Tabla 25. Evaluación de los parámetros
Tabla 26. Resumen de resultados de deflexiones máximas 165
Tabla 27. Resumen de resultados de radios de curvatura
Tabla 28. Comparación de parámetros
Tabla 29. Resumen de resultados de ensayo de granulometría
Tabla 30. Resumen de resultados de ensayo de límites de Atterberg 173
Tabla 31. Resumen de resultados de clasificación de suelos por
sistema de SUCS y AASHTO (A) 173
Tabla 32. Resumen de resultados de clasificación de suelos por
sistema de SUCS y AASHTO (B) 174
Tabla 33. Resumen de resultados de ensayo de proctor modificado
Tabla 34. Resumen de resultados de ensayo de CBR 175
Tabla 35. Parámetros de verificación de valores de servicio por fórmulas y
admisible del modelo estructural. (Progresiva: 23+275 Km) 186
Tabla 36. Parámetros de verificación de valores de servicio por fórmulas y
admisible del modelo estructural. (Progresiva: 23+750 Km) 192
Tabla 37. Parámetros de verificación de valores de servicio por fórmulas y
admisible del modelo estructural. (Progresiva: 24+475 Km) 198
Tabla 38. Parámetros de verificación de valores de servicio por fórmulas y
admisible del modelo estructural. (Progresiva: 24+850 Km) 204

Tabla 39. Parámetros de verificación de valores de servicio por software y
admisible del modelo estructural. (Progresiva: 23+275 Km.
Eje X)
Tabla 40. Parámetros de verificación de valores de servicio por software y
admisible del modelo estructural. (Progresiva: 23+750 Km.
Eje X)
Tabla 41. Parámetros de verificación de valores de servicio por software y
admisible del modelo estructural. (Progresiva: 24+475 Km.
Eje X)
Tabla 42. Parámetros de verificación de valores de servicio por software y
admisible del modelo estructural. (Progresiva: 24+850 Km.
Eje X)
Tabla 43. Comparación de los resultados obtenidos por el método
CONREVIAL y SHELL (Progresiva: 23+275 Km. Eje X) 230
Tabla 44. Comparación de los resultados obtenidos por el método
CONREVIAL y SHELL (Progresiva: 23+750 Km. Eje X) 231
Tabla 45. Comparación de los resultados obtenidos por el método
CONREVIAL y SHELL (Progresiva: 24+475 Km. Eje X) 232
Tabla 46. Comparación de los resultados obtenidos por el método
CONREVIAL y SHELL (Progresiva: 24+850 Km. Eje X) 233
Tabla 47. Parámetros de verificación de valores de servicio por software y
admisible del modelo estructural. (Progresiva: 23+275 Km.
Eje Y)

Tabla 48. Parámetros de verificación de valores de servicio por software y
admisible del modelo estructural. (Progresiva: 23+750 Km.
Eje Y) 245
Tabla 49. Parámetros de verificación de valores de servicio por software y
admisible del modelo estructural. (Progresiva: 24+475 Km.
Eje Y) 250
Tabla 50. Parámetros de verificación de valores de servicio por software y
admisible del modelo estructural. (Progresiva: 24+850 Km.
Eje Y) 255
Tabla 51. Valores de esfuerzos radiales, tangenciales.
(Progresiva: 23+275 Km. Eje X) 257
Tabla 52. Valores de esfuerzos verticales. (Progresiva: 23+275 Km. Eje X) 258
Tabla 53. Valores de deformaciones radiales, tangenciales.
(Progresiva: 23+275 Km. Eje X) 260
Tabla 54. Valores de deformaciones verticales.
(Progresiva: 23+275 Km. Eje X)
Tabla 55. Valores de deflexiones verticales.
(Progresiva: 23+275 Km. Eje X)
Tabla 56. Valores de esfuerzos radiales, tangenciales.
(Progresiva: 23+750 Km. Eje X)
Tabla 57. Valores de esfuerzos verticales. (Progresiva: 23+750 Km. Eje X) 265
Tabla 58. Valores de deformaciones radiales, tangenciales
(Progresiva: 23+750 Km. Eje X)

Tabla 59. Valores de deformaciones verticales
(Progresiva: 23+750 Km. Eje X) 267
Tabla 60. Valores de deflexiones verticales
(Progresiva: 23+750 Km. Eje X) 269
Tabla 61. Valores de esfuerzos radiales, tangenciales.
(Progresiva: 24+475 Km. Eje X) 270
Tabla 62. Valores de esfuerzos verticales. (Progresiva: 24+475 Km. Eje X) 271
Tabla 63. Valores de deformaciones radiales, tangenciales.
(Progresiva: 24+475 Km. Eje X) 272
Tabla 64. Valores de deformaciones verticales
(Progresiva: 24+475 Km. Eje X)
Tabla 65. Valores de deflexiones verticales
(Progresiva: 24+475 Km. Eje X) 274
Tabla 66. Valores de esfuerzos radiales, tangenciales.
(Progresiva: 24+850 Km. Eje X)
Tabla 67. Valores de esfuerzos verticales. (Progresiva: 24+850 Km. Eje X) 276
Tabla 68. Valores de deformaciones radiales, tangenciales
(Progresiva: 24+850 Km. Eje X)
Tabla 69. Valores de deformaciones verticales. (Progresiva: 24+850 Km.
Eje X)
Tabla 70. Valores de deflexiones verticales. (Progresiva: 24+850 Km.
Eje X)
Tabla 71. Valores de esfuerzos radiales. (Progresiva: 23+275 Km. Eje Y) 282

Tabla 72. Valores de esfuerzos tangenciales. (Progresiva: 23+275 Km.
Eje Y)
Tabla 73. Valores de esfuerzos verticales. (Progresiva: 23+275 Km. Eje Y) 284
Tabla 74. Valores de deformaciones radiales. (Progresiva: 23+275 Km.
Eje Y)
Tabla 75. Valores de deformaciones tangenciales. (Progresiva: 23+275 Km.
Eje Y)
Tabla 76. Valores de deformaciones verticales. (Progresiva: 23+275 Km.
Eje Y)
Tabla 77. Valores de deflexiones verticales. (Progresiva: 23+275 Km.
Eje Y)
Tabla 78. Valores de esfuerzos radiales. (Progresiva: 23+750 Km. Eje Y) 293
Tabla 79. Valores de esfuerzos tangenciales.
(Progresiva: 23+750 Km. Eje Y) 293
Tabla 80. Valores de esfuerzos verticales. (Progresiva: 23+750 Km. Eje Y) 294
Tabla 81. Valores de deformaciones radiales.
(Progresiva: 23+750 Km. Eje Y) 295
Tabla 82. Valores de deformaciones tangenciales.
(Progresiva: 23+750 Km. Eje Y) 296
Tabla 83. Valores de deformaciones verticales.
(Progresiva: 23+750 Km. Eje Y) 297
Tabla 84. Valores de deflexiones verticales. (Progresiva: 23+750 Km.
Eje Y)
Tabla 85. Valores de esfuerzos radiales. (Progresiva: 24+475 Km. Eje Y) 300

Tabla 86. Valores de esfuerzos tangenciales. (Progresiva: 24+475 Km.
Eje Y)
Tabla 87. Valores de esfuerzos verticales. (Progresiva: 24+475 Km. Eje Y) 301
Tabla 88. Valores de deformaciones radiales. (Progresiva: 24+475 Km.
Eje Y)
Tabla 89. Valores de deformaciones tangenciales. (Progresiva: 24+475 Km.
Eje Y)
Tabla 90. Valores de deformaciones verticales. (Progresiva: 24+475 Km.
Eje Y)
Tabla 91. Valores de deflexiones verticales. (Progresiva: 24+475 Km.
Eje Y)
Tabla 92. Valores de esfuerzos radiales. (Progresiva: 24+850 Km. Eje Y) 307
Tabla 93. Valores de esfuerzos tangenciales. (Progresiva: 24+850 Km.
Eje Y)
Tabla 94. Valores de esfuerzos verticales. (Progresiva: 24+850 Km. Eje Y) 308
Tabla 95. Valores de deformaciones radiales. (Progresiva: 24+850 Km.
Eje Y) 309
Tabla 96. Valores de deformaciones tangenciales. (Progresiva: 24+850 Km.
Eje Y)
Tabla 97. Valores de deformaciones verticales. (Progresiva: 24+850 Km.
Eje Y)
Tabla 98. Valores de deflexiones verticales. (Progresiva: 24+850 Km.
Eje Y) 313

Tabla 99. Valores de cuenco de deflexiones método CONREVIAL (Tramo:
23+000 – 25+000 Km)
Tabla 100. Valores de cuenco de deflexiones método CONREVIAL
(Progresiva: 23+275 Km)
Tabla 101. Valores de cuenco de deflexiones método SHELL (Progresiva:
23+275 Km. Eje X)
Tabla 102. Valores de cuenco de deflexiones método CONREVIAL
(Progresiva: 23+750 Km)
Tabla 103. Valores de cuenco de deflexiones método SHELL (Progresiva:
23+750 Km. Eje X)
Tabla 104. Valores de cuenco de deflexiones método CONREVIAL
(Progresiva: 24+475 Km)
Tabla 105. Valores de cuenco de deflexiones método SHELL (Progresiva:
24+475 Km. Eje X)
Tabla 106. Valores de cuenco de deflexiones método CONREVIAL
(Progresiva: 24+850 Km)
Tabla 107. Valores de cuenco de deflexiones método SHELL (Progresiva:
24+850 Km. Eje X)
Tabla 108. Valores de cuenco de deflexiones método SHELL (Progresiva:
23+275 Km. Eje Y)
Tabla 109. Valores de cuenco de deflexiones método SHELL (Progresiva:
23+750 Km. Eje Y)
Tabla 110. Valores de cuenco de deflexiones método SHELL (Progresiva:
24+475 Km. Eje Y)

Tabla 111. Valores de cuenco de deflexiones método SHELL (Progresiva:	
24+850 Km. Eje Y)	. 345
Tabla 112. Valores para recuperación elástica método CONREVIAL	
(Progresiva: 23+275 Km. Eje X)	. 347
Tabla 113. Valores para recuperación elástica método CONREVIAL	
(Progresiva: 23+750 Km. Eje X)	. 350
Tabla 114. Valores para recuperación elástica método CONREVIAL	
(Progresiva: 24+475 Km. Eje X)	. 352
Tabla 115. Valores para recuperación elástica método CONREVIAL	
(Progresiva: 24+850 Km. Eje X)	. 355
Tabla 116. Valores de deflexiones a segundo año, método CONREVIAL	
(Progresiva: 23+275 Km. Eje X)	. 357
Tabla 117. Valores de deflexiones a segundo año, método CONREVIAL	
(Progresiva: 23+750 Km. Eje X)	. 358
Tabla 118. Valores de deflexiones a segundo año, método CONREVIAL	
(Progresiva: 24+475 Km. Eje X)	. 359
Tabla 119. Valores de deflexiones a segundo año, método CONREVIAL	
(Progresiva: 24+850 Km. Eje X)	. 360
Tabla 120. Valores de deflexiones promedios a segundo año, método	
CONREVIAL (Tramo: 2 Km)	. 361
Tabla 121. Valores de recuperación elástica y permanente, método	
CONREVIAL (Tramo: 2 Km)	. 371

CONTENIDO DE FIGURAS

Figura 1. Fisura longitudinal
Figura 2. Fisura en media luna y fisuras inicios de piel de cocodrilo
Figura 3. Fisuras de borde
Figura 4. Sección típica de la infraestructura del camino 20
Figura 5. Estructura del pavimento flexible
Figura 6. Gráfica de la curva de compactación proctor modificado 31
Figura 7. Pérdida de serviciabilidad en un pavimento flexible
Figura 8. Esquema del comportamiento de cuenco de deflexiones 39
Figura 9. Procedimiento en campo de uso del equipo Viga Benkelman
(Carril derecho)
Figura 10. Prodecimiento de toma de datos (Lectura deflectometría) 41
Figura 11. Viga Benkelman doble brazo 42
Figura 12. Esquema y principio de operación de la Viga Benkelman 45
Figura 13. Configuración geométrica del sistema de carga
Figura 14. Deflexión producida por dos neumáticos
Figura 15. Medida de lectura
Figura 16. Colocación de la viga Benkelman posición inicial y final 53
Figura 17. Esquematización del proceso de medición con la Viga Benkelman 54
Figura 18. Medición de deflexión recuperable 56
Figura 19. Deformación del pavimento y radio de curvatura 59
Figura 20. Característica del paviemnto de acuerdo al cuenco de deflexiones 66
Figura 21. Presión de contacto, presión de inflado de los neumáticos

Figura 22. Presión de contacto, presión de inflado del neumático y área
de contacto
Figura 23. Áreas circulares consideradas en las presiones de contacto con el
pavimento
Figura 24. Huella circular o redondeada 69
Figura 25. Cargas distribuidas del pavimento flexible75
Figura 26. Distribución de presiones de carga de rueda sobre la estructura
del pavimento76
Figura 27. Distribución de esfuerzos en un paviemnto flexible77
Figura 28. Diagrama de distribución de los esfuerzos con la profundidad77
Figura 29. Deformación unitaria
Figura 30. Deformación del pavimento producido por esfuerzos de tensión y
comprensión 79
Figura 31. Deformación del pavimento ante la carga – variable crítica 80
Figura 31. Deformación del pavimento ante la carga – variable crítica
 Figura 31. Deformación del pavimento ante la carga – variable crítica
 Figura 31. Deformación del pavimento ante la carga – variable crítica
 Figura 31. Deformación del pavimento ante la carga – variable crítica
 Figura 31. Deformación del pavimento ante la carga – variable crítica
Figura 31. Deformación del pavimento ante la carga – variable crítica
Figura 31. Deformación del pavimento ante la carga – variable crítica
 Figura 31. Deformación del pavimento ante la carga – variable crítica
 Figura 31. Deformación del pavimento ante la carga – variable crítica

Figura 41. Tensiones generadas por una carga puntual sobre semi espacio 01 97
Figura 42. Tensiones generadas por una carga puntual sobre semi espacio 02 97
Figura 43. Distribución de esfuerzos en el terreno debido a una carga puntual 99
Figura 44. Esquema del modelo de Bousinessq 101
Figura 45. Notación en coordenadas cilíndricas de Bousinessq 101
Figura 46. Carga puntual esfuerzo vertical-notación en coordenadas
cilíndricas de Bousinessq 102
Figura 47. Carga circular uniforme esfuerzo vertical-notación en
coordenadas cilíndricas de Bousinessq 103
Figura 48. Modelo estructural de dos capas 111
Figura 49. Modelo estructural tricapa 115
Figura 50. Modelo de un sistema elástico multicapa 117
Figura 51. Esquema general del sistema de pavimento multicapa 119
Figura 52. Esquema general del sistema de pavimento multicapa
Tridimensional
Figura 53. Puntos de análisis de los estados tensionales 131
Figura 54. Deflexión de los puntos de estudio 132
Figura 55. Cuencos de deflexión a una profundidad Z de 0, 10, 30,
60 y 100 cm 133
Figura 56. Viga Benkelman 135
Figura 57. Medida de presión de aire al neumático 136
Figura 58. Medidor de presión 137
Figura 59. Termómetro convensional 137
Figura 60. Carguío al camión con material grava 1/2" 138

Figura 61. Camión C2 con carga en pesaje 138
Figura 62. Resultados de la balanza 139
Figura 63. Flexómetro de 5 m 139
Figura 64. Herramientas varios
Figura 65. Cuña para camión 140
Figura 66. Lectura de coordenadas UTM en GPS 141
Figura 67. Inventario vial – Emp.PE-36 A (Torata – Otora – Jaguay –
Omate – Coalaque – Puquina – L.D. Moquegua MO 108) 142
Figura 68. Ubicación del tramo II Km. 15+000 al Km 35+000 (Otora –
San Juan Sanjone) 143
Figura 69. Ubicación del tramo Km. 23+000 al Km 25+000 143
Figura 70. Plano de planta tramo Km. 23+000 al Km. 24+000 144
Figura 71. Plano de planta tramo Km. 24+000 al Km. 25+000 144
Figura 72. Sección transversal típica a media ladera vía de dos carriles 146
Figura 73. Tipo de suelo en toda la vía, tramo Km 0+000 – Km 103+000 147
Figura 74. Ubicación del centro de gravedad del eje simple posterior 151
Figura 75. Alineamiento de viga Benkelman con el centro de los neumáticos 152
Figura 76. Medida de lectura 153
Figura 77. La aguja en cero del dial 153
Figura 78. $D_0 = Deflexión máximo154$
Figura 79. $D_{25} = Deflexión a 25 cm.$ 155
Figura 80. Deflectometría (progresiva: 23+000 a 24+000 Km) 168
Figura 81. Radio curvatura (progresiva: 23+000 a 24+000 Km) 169
Figura 82. Deflectometría (progresiva: 24+000 a 25+000 Km) 170

Figura 83. Radio curvatura (progresiva: 24+000 a 25+000 Km) 171
Figura 84. Modelo estructural en eje X (progresiva: 23+275 Km) 181
Figura 85. Modelo estructural en eje X (progresiva: 23+750 Km) 187
Figura 86. Modelo estructural en eje X (progresiva: 24+475 Km) 193
Figura 87. Modelo estructural en eje X (progresiva: 24+850 Km) 199
Figura 88. Esquema modelo estructural en eje X (progresiva: 23+275 Km –
vista lateral)
Figura 89. Información de entrada de la presión de contacto y carga.
(progresiva: 23+275 Km – Eje X) 210
Figura 90. Información de las capas que conforman la estructura y sus
características. (progresiva: 23+275 Km– Eje X) 211
Figura 91. Información de entrada, posiciones. (progresiva:
23+275 Km– Eje X) 211
Figura 92. Resultado (reporte de salida) del programa BISAR 3.0.
(progresiva: 23+275 Km– Eje X) 212
Figura 93. Esquema modelo estructural en eje X (progresiva: 23+750 Km –
vista lateral)
Figura 94. Información de entrada de la presión de contacto y carga.
(progresiva: 23+750 Km – Eje X) 215
Figura 95. Información de las capas que conforman la estructura y sus
características. (progresiva: 23+750 Km – Eje X) 216
Figura 96. Información de entrada, posiciones. (progresiva:
23+750 Km – Eje X)

Figura 97. Resultado (reporte de salida) del programa BISAR 3.0.
(progresiva: 23+750 Km – Eje X) 217
Figura 98. Esquema modelo estructural en eje X (progresiva: 24+475 Km –
vista lateral)
Figura 99. Información de entrada de la presión de contacto y carga.
(progresiva: 24+475 Km – Eje X) 220
Figura 100. Información de las capas que conforman la estructura y sus
características. (progresiva: 24+475 Km – Eje X) 221
Figura 101. Información de entrada, posiciones. (progresiva: 24+475 Km -
Eje X)
Figura 102. Resultado (reporte de salida) del programa BISAR 3.0.
(progresiva: 24+475 Km – Eje X) 222
Figura 103. Esquema modelo estructural en eje X (progresiva: 24+850 Km –
vista lateral)
Figura 104. Información de entrada de la presión de contacto y carga.
(progresiva: 24+850 Km – Eje X) 225
Figura 105. Información de las capas que conforman la estructura y sus
características. (progresiva: 24+850 Km – Eje X) 226
Figura 106. Información de entrada, posiciones. (progresiva: 24+850 Km –
Eje X)
Figura 107. Resultado (reporte de salida) del programa BISAR 3.0.
(progresiva: 24+850 Km – Eje X) 227
Figura 108. Esquema modelo estructural en eje Y (progresiva: 23+275 Km -
vista frontal)

Figura 109. Información de entrada de la presión de contacto y carga.
(progresiva: 23+275 Km – Eje Y) 236
Figura 110. Información de las capas que conforman la estructura y sus
características. (progresiva: 23+275 Km – Eje Y) 237
Figura 111. Información de entrada, posiciones. (progresiva:
23+275 Km – Eje Y) 237
Figura 112. Resultado (reporte de salida) del programa BISAR 3.0.
(progresiva: 23+275 Km – Eje Y) 238
Figura 113. Esquema modelo estructural en eje Y (progresiva: 23+750 Km -
vista frontal) 241
Figura 114. Información de entrada de la presión de contacto y carga.
(progresiva: 23+750 Km – Eje Y) 241
Figura 115. Información de las capas que conforman la estructura y sus
características. (progresiva: 23+750 Km – Eje Y) 242
Figura 116. Información de entrada, posiciones. (progresiva: 23+750 Km –
Eje Y)
Figura 117. Resultado (reporte de salida) del programa BISAR 3.0.
(progresiva: 23+750 Km – Eje Y) 243
Figura 118. Esquema modelo estructural en eje Y (progresiva: 24+475 Km -
vista frontal)
Figura 119. Información de entrada de la presión de contacto y carga.
(progresiva: 24+475 Km – Eje Y) 246
Figura 120. Información de las capas que conforman la estructura y sus
características. (progresiva: 24+475 Km – Eje Y) 247

Figura 121.	Información de entrada, posiciones. (progresiva: 24+475 Km –	
Ι	Eje Y)	247
Figura 122.	Resultado (reporte de salida) del programa BISAR 3.0.	
((progresiva: 24+475 Km – Eje Y) 2	248
Figura 123.	Esquema modelo estructural en eje Y (progresiva: 24+850 Km –	
V	vista frontal) 2	251
Figura 124.	Información de entrada de la presión de contacto y carga.	
((progresiva: 24+850 Km – Eje Y) 2	251
Figura 125.	Información de las capas que conforman la estructura y sus	
C	características. (progresiva: 24+850 Km – Eje Y) 2	252
Figura 126.	Información de entrada, posiciones. (progresiva: 24+850 Km –	
I	Eje Y)	252
Figura 127.	Resultado (reporte de salida) del programa BISAR 3.0.	
((progresiva: 24+850 Km – Eje Y) 2	253
Figura 128.	Variación del esfuerzo radial, tangencial y vertical en función	
	de la profundidad Z. (progresiva: 23+275 Km – Eje X) 2	258
Figura 129.	Variación de la deformación radial, tangencial en función de la	
	profundidad Z. (progresiva: 23+275 Km – Eje X) 2	260
Figura 130.	Variación de la deformación vertical en función de la	
	profundidad Z. (progresiva: 23+275 Km – Eje X) 2	262
Figura 131.	Perfil de deflexión en función de la profundidad Z. (progresiva:	
	23+275 Km – Eje X) 2	264
Figura 132.	Variación del esfuerzo radial, tangencial y vertical en	
	función de la profundidad Z. (progresiva: 23+750 Km – Eje X) 2	266

Figura 133. Variación de la deformación radial, tangencial en función de la
profundidad Z. (progresiva: 23+750 Km – Eje X) 267
Figura 134. Variación de la deformación vertical en función de la
profundidad Z. (progresiva: 23+750 Km – Eje X) 268
Figura 135. Perfil de deflexión en función de la profundidad Z. (progresiva:
23+750 Km – Eje X)
Figura 136. Variación del esfuerzo radial, tangencial y vertical en función
de la profundidad Z. (progresiva: 24+475 Km – Eje X) 271
Figura 137. Variación de la deformación radial, tangencial en función de la
profundidad Z. (progresiva: 24+475 Km – Eje X) 272
Figura 138. Variación de la deformación vertical en función de la
profundidad Z. (progresiva: 24+475 Km – Eje X) 273
Figura 139. Perfil de deflexión en función de la profundidad Z. (progresiva:
24+475 Km – Eje X) 275
Figura 140. Variación del esfuerzo radial, tangencial y vertical en función
de la profundidad Z. (progresiva: 24+850 Km – Eje X) 277
Figura 141. Variación de la deformación radial, tangencial en función
de la profundidad Z. (progresiva: 24+850 Km – Eje X) 278
Figura 142. Variación de la deformación vertical en función de la
profundidad Z. (progresiva: 24+850 Km – Eje X) 279
Figura 143. Perfil de deflexión en función de la profundidad Z. (progresiva:
24+850 Km – Eje X) 280
Figura 144. Variación del esfuerzo radial, tangencial y vertical en función
de la profundidad Z. (progresiva: 23+275 Km – Eje Y) 285

Figura 145. Variación de la deformación radial en función de la
profundidad Z. (progresiva: 23+275 Km – Eje Y) 287
Figura 146. Variación de la deformación tangencial en función de la
profundidad Z. (progresiva: 23+275 Km – Eje Y) 289
Figura 147. Variación de la deformación vertical en función de la
profundidad Z. (progresiva: 23+275 Km – Eje Y) 291
Figura 148. Perfil de deflexión en función de la profundidad Z. (progresiva:
23+275 Km – Eje Y) 292
Figura 149. Variación del esfuerzo radial, tangencial y vertical en función
de la profundidad Z. (progresiva: 23+750 Km – Eje Y) 295
Figura 150. Variación de la deformación radial en función de la
profundidad Z. (progresiva: 23+750 Km – Eje Y) 296
Figura 151. Variación de la deformación tangencial en función de la
profundidad Z. (progresiva: 23+750 Km – Eje Y) 297
Figura 152. Variación de la deformación vertical en función de la
profundidad Z. (progresiva: 23+275 Km – Eje Y) 298
Figura 153. Perfil de deflexión en función de la profundidad Z. (progresiva:
23+750 Km – Eje Y)
Figura 154. Variación del esfuerzo radial, tangencial y vertical en función
de la profundidad Z. (progresiva: 24+475 Km – Eje Y) 302
Figura 155. Variación de la deformación radial en función de la
profundidad Z. (progresiva: 24+475 Km – Eje Y) 303
Figura 156. Variación de la deformación tangencial en función de la
profundidad Z. (progresiva: 24+475 Km – Eje Y) 304

Figura 157. Variación de la deformación vertical en función de la
profundidad Z. (progresiva: 24+475 Km – Eje Y) 305
Figura 158. Perfil de deflexión en función de la profundidad Z. (progresiva:
24+475 Km – Eje Y) 306
Figura 159. Variación del esfuerzo radial, tangencial y vertical en función
de la profundidad Z. (progresiva: 24+850 Km – Eje Y) 309
Figura 160. Variación de la deformación radial en función de la
profundidad Z. (progresiva: 24+850 Km – Eje Y) 310
Figura 161. Variación de la deformación tangencial en función de la
profundidad Z. (progresiva: 24+850 Km – Eje Y) 311
Figura 162. Variación de la deformación vertical en función de la
profundidad Z. (progresiva: 24+850 Km – Eje Y) 312
Figura 163. Perfil de deflexión en función de la profundidad Z. (progresiva:
24+850 Km – Eje Y) 313
Figura 164. Cuenco de deflexiones, método CONREVIAL (progresiva:
23+000 – 25+000Km – Eje X)
Figura 165. Cuenco de deflexiones, método CONREVIAL (progresiva:
23+275 Km – Eje X) 315
Figura 166. Información de entrada, posiciones para cuenco de deflexiones
(progresiva: 23+275 Km – Eje X) 316
Figura 167. Resultado (reporte de salida) del programa BISAR 3.0, para
cuenco de deflexiones (progresiva: 23+275 Km – Eje X) 317
Figura 168. Cuenco de deflexiones método SHELL (progresiva:
23+275 Km – Eje X)

Figura 169. Cuenco de deflexiones, método CONREVIAL (progresiva:
23+750 Km – Eje X)
Figura 170. Información de entrada, posiciones para cuenco de deflexiones
(progresiva: 23+750 Km – Eje X) 321
Figura 171. Resultado (reporte de salida) del programa BISAR 3.0, para
cuenco de deflexiones (progresiva: 23+750 Km – Eje X) 322
Figura 172. Cuenco de deflexiones método SHELL (progresiva:
23+750 Km – Eje X) 324
Figura 173. Cuenco de deflexiones, método CONREVIAL (progresiva:
24+475 Km – Eje X) 325
Figura 174. Información de entrada, posiciones para cuenco de deflexiones
(progresiva: 24+475 Km – Eje X) 326
Figura 175. Resultado (reporte de salida) del programa BISAR 3.0, para
cuenco de deflexiones (progresiva: 24+475 Km – Eje X) 327
Figura 176. Cuenco de deflexiones método SHELL (progresiva:
24+475 Km – Eje X)
Figura 177. Cuenco de deflexiones, método CONREVIAL (progresiva:
24+850 Km – Eje X)
Figura 178. Información de entrada, posiciones para cuenco de deflexiones
(progresiva: 24+850 Km – Eje X) 331
Figura 179. Resultado (reporte de salida) del programa BISAR 3.0, para
cuenco de deflexiones (progresiva: 24+850 Km – Eje X) 332
Figura 180. Cuenco de deflexiones método SHELL (progresiva:
24+850 Km – Eje X)

Figura 181. Información de entrada, posiciones para cuenco de deflexiones
(progresiva: 23+275 Km – Eje Y) 334
Figura 182. Resultado (reporte de salida) del programa BISAR 3.0, para
cuenco de deflexiones (progresiva: 23+275 Km – Eje Y) 335
Figura 183. Cuenco de deflexiones método SHELL (progresiva:
23+275 Km – Eje Y)
Figura 184. Información de entrada, posiciones para cuenco de deflexiones
(progresiva: 23+750 Km – Eje Y)
Figura 185. Resultado (reporte de salida) del programa BISAR 3.0, para
cuenco de deflexiones (progresiva: 23+750 Km – Eje Y) 338
Figura 186. Cuenco de deflexiones método SHELL (progresiva:
23+750 Km – Eje Y)
Figura 187. Información de entrada, posiciones para cuenco de deflexiones
(progresiva: 24+475 Km – Eje Y) 340
Figura 188. Resultado (reporte de salida) del programa BISAR 3.0, para
cuenco de deflexiones (progresiva: 24+475 Km – Eje Y) 341
Figura 189. Cuenco de deflexiones método SHELL (progresiva:
24+475 Km – Eje Y)
Figura 190. Información de entrada, posiciones para cuenco de deflexiones
(progresiva: 24+850 Km – Eje Y) 343
Figura 191. Resultado (reporte de salida) del programa BISAR 3.0, para
cuenco de deflexiones (progresiva: 24+850 Km – Eje Y) 344
Figura 192. Cuenco de deflexiones método SHELL (progresiva:
24+850 Km – Eje Y)

Figura 193. Deflexiones en los puntos de estudio, método CONREVIAL
(progresiva: 23+275 Km – Eje X) 348
Figura 194. Recuperación elástica, método CONREVIAL (progresiva:
23+275 Km – Eje X)
Figura 195. Deflexiones en los puntos de estudio, método CONREVIAL
(progresiva: 23+750 Km – Eje X) 351
Figura 196. Recuperación elástica, método CONREVIAL (progresiva:
23+750 Km – Eje X)
Figura 197. Deflexiones en los puntos de estudio, método CONREVIAL
(progresiva: 24+475 Km – Eje X)
Figura 198. Recuperación elástica, método CONREVIAL (progresiva:
24+475 Km – Eje X)
Figura 199. Deflexiones en los puntos de estudio, método CONREVIAL
(progresiva: 24+850 Km – Eje X) 356
Figura 200. Recuperación elástica, método CONREVIAL (progresiva:
24+850 Km – Eje X)
Figura 201. Cuenco de deflexiones a segundo año de serviciabilidad, método
CONREVIAL (progresiva: 23+275 Km – Eje X) 357
Figura 202. Cuenco de deflexiones a segundo año de serviciabilidad, método
CONREVIAL (progresiva: 23+750 Km – Eje X) 358
Figura 203. Cuenco de deflexiones a segundo año de serviciabilidad, método
CONREVIAL (progresiva: 24+475 Km – Eje X) 359
Figura 204. Cuenco de deflexiones a segundo año de serviciabilidad, método
CONREVIAL (progresiva: 24+850 Km – Eje X)

Figura 205. Correlación deflexión vs. Tiempo, a segundo año de servicialidad,

método CONREVIAL (progresiva: 24+850 Km – Eje	X) 361
Figura 206. Distribución de "t" Student	

CONTENIDO DE ECUACIONES

Ecuación 1. Deflexión total
Ecuación 2. Deflexión en la medida "n"
Ecuación 3. Deflexión recuperable, medida a la temperatura esténdar (20°C) 57
Ecuación 4. Radio curvatura 59
Ecuación 5. Deflexión media
Ecuación 6. Desviación estándar
Ecuación 7. Coeficiente de variación
Ecuación 8. Deflexión característica
Ecuación 9. Deflexión admisible
Ecuación 10. Deflexión crítica
Ecuación 11. Presión de carga 01
Ecuación 12. Radio de carga 01
Ecuación 13. Presión de contacto de plato de carga
Ecuación 14. Área de contacto 69
Ecuación 15. Área de contacto en función de radio de carga 69
Ecuación 16. Radio de carga reemplazando a ecuación 13 69
Ecuación 17. Separación entre ejes
Ecuación 18. Esfuerzo normal
Ecuación 19. Deformaciones
Ecuación 20. Rigidez 81
Ecuación 21. Deformación unitaria longitudinal
Ecuación 22. Deformación unitaria diametral

Ecuación 23. Módulo de elasticidad	85
Ecuación 24. Coeficiente de poisson	88
Ecuación 25. Módulo de elasticidad. NAASRA condición 01	90
Ecuación 26. Módulo de elasticidad. NAASRA condición 02	90
Ecuación 27. Módulo de elasticidad. Heukelon and Klomp	90
Ecuación 28. Módulo de elasticidad. Powell, Potter, Mayhew y Nunn	90
Ecuación 29. Módulo de elasticidad. Putri, Hameswara y Mannan. v = 0	91
Ecuación 30. Módulo de elasticidad. Putri, Hameswara y Mannan. v = 0.3	91
Ecuación 31. Módulo de elasticidad. Putri, Hameswara y Mannan. v = 0.4	91
Ecuación 32. Módulo de elasticidad. Hajiannia, Dorobati, Kasaeian y	
Baghbadorani	91
Ecuación 33. Ecuación de interpolación	94
Ecuación 34. Esfuerzo vertical generada por una carga puntual	98
Ecuación 35. Ángulo opuesto de esfuerzo vertical	98
Ecuación 36. Radio del esfuerzo vertical	98
Ecuación 37. Esfuerzo vertical a un radio X	98
Ecuación 38. Factor de influencia	98
Ecuación 39. Esfuerzo vertical según factor de influencia	98
Ecuación 40. Esfuerzo vertical según Bulbo de presiones de Boussinesq	99
Ecuación 41. Esfuerzo vertical, (una capa)10	04
Ecuación 42. Esfuerzo radial, (una capa)10	04
Ecuación 43. Esfuerzo tangencial, (una capa) 10	05
Ecuación 44. Esfuerzo cortante máximo10	05
Ecuación 45. Esfuerzo cortante máximo sustituido 10	05

Ecuación 46. Deformación vertical, (una capa)
Ecuación 47. Deformación radial, (una capa) 106
Ecuación 48 Deformación tangencial, (una capa) 107
Ecuación 49. Deflexión vertical 01 a una profundidad Z 108
Ecuación 49b. Deflexión vertical 02 a una profundidad Z 108
Ecuación 50. Deflexión vertical, cuando µ=0,5 108
Ecuación 51. Deflexión vertical, $Z = 0$
Ecuación 52. Deflexión vertical en la superficie del pavimento (dos capa)
según Palmer y Barber111
Ecuación 53. Deflexión en la primera capa según Palmer y Barber 112
Ecuación 54. Deflexión de superficie de la subrasante según Palmer y Barber . 112
Ecuación 55. Deflexión en la superficie del pavimento según Odemark 112
Ecuación 56. Deflexión en la primera capa según Odemark 112
Ecuación 57. Deflexión en la superficie de la subrasante según Odemark 113
Ecuación 58. Esfuerzo vertical de compresión sobre la subrasante 113
Ecuación 59. Espesor equivalente 114
Ecuación 60. Espesor equivalente, si $\mu_1 = \mu_2 = 0,5$ 114
Ecuación 61. Esfuerzos cortantes multicapa 117
Ecuación 62. Deformación vertical multicapa 118
Ecuación 63. Deformación radial multicapa 118
Ecuación 64. Deformación tangencial multicapa 118
Ecuación 65. Deflexión en la superficie de la estructura multicapa según
Palmer y Barber
Ecuación 66. Módulo equivalente multicapa

Ecuación 67. Deflexión en la subrasante multicapa según Odemark 121
Ecuación 68. Carga aplicada para multicapa 121
Ecuación 69. Espesor equivalente para multicapa 121
Ecuación 70. Esfuerzo vertical de compresiín sobre la subrasante multcapa
según Odemark y Kirk 122
Ecuación 71. Esfuerzo vertical admisible de compresión sobre la subrsante
según Dormon - Kerhoven 127
Ecuación 72. Esfuerzo vertical admisible de compresión sobre la subrsante
según CRR de Bélgica128
Ecuación 73. Deformación radial admisible de tracción en la superficie de
carpeta asfáltica según SHELL 128
Ecuación 74. Deformación radial admisible de tracción en la superficie de
carpeta CRR de Bélgica 129
Ecuación 75. Deformación vertical admisible por comprensión sobre la
subrasante según SHELL 129
Ecuación 76. Deflexión admisible de la estructura del pavimento según
Huang 130

CONTENIDO DE APÉNDICES

Apéndice A. Plano clave
Apéndice B. Ensayo de medida de la deflexión 2018 388
Apéndice C. Ensayo de laboratorio de mecánica de suelos
Apéndice D. Ensayo de medida de la deflexión 2019 435
Apéndice E. Ensayo de medida de la deflexión 2020 448
Apéndice F. Análisis combinado de los resultados de la evaluación
Cuadro 12.23 del MC-MTC 2014 451
Apéndice G. Reparaciones y procedimiento preventivos para pavimentos
flexibles ASSHTI 93 Cuadro 12.26 del MC-MTC 2014 452

RESUMEN

La presente investigación ha sido determinante para evaluar el comportamiento estructural de la red vial Moquegua MO-108 (2 Km). Vía que corresponde a segunda clase (IMDA = 2000-401 veh/día), según su jerarquía del Sistema Nacional (PE-36A). La investigación comprendió de un proceso de desarrollo en distintas etapas, iniciando con inspección visual del tramo en estudio, verificación del ensayo de la deflexión de carpeta asfáltica terminada (años 2018, 2019 y 2020), obteniendo una deflexión característica 75.02 x 10^-2 mm, la cual es menor que la deflexión admisible 133.5 x 10⁻² mm y un radio de curvatura promedio 138.96 x 10⁻² mm, mayor al mínimo establecido (100 m), se concluye un buen comportamiento de la subrasante y el 92.6% posee un buen comportamiento del pavimento. Es decir que, en el cuarto punto de estudio dentro del 7.4% mal comportamiento del pavimento se requiere el sellado de fisuras, de acuerdo al método CONREVIAL. Se realizó ensayos de laboratorio (capacidad de soporte) en los puntos críticos, para evaluar por expresión analítica y Programa BISAR 3.0 por el método SHELL, a través de procesamiento de datos y análisis, nos permitió determinar el comportamiento estructural del pavimento. La deflexión admisible de 1,1616 mm, el esfuerzo y deformación vertical de compresión sobre la sub rasante cumplen control de ahuellamiento y deflexión. Pero la deformación radial de tracción en la base de la capa asfáltica no cumple, por ende no cumple el control de fatiga.

Palabras clave: Comportamiento, deflexiones, cuencos, elástica, esfuerzos, deformaciones, compresión, tracción.
ABSTRACT

This research has been decisive in evaluating the structural behavior of the Moquegua MO-108 road network (2 Km). Road that corresponds to second class (IMDA = 2000-401 veh / day), according to its hierarchy of the National System (PE-36A). The research comprised a development process in different stages, starting with a visual inspection of the section under study, verification of the deflection test of the finished asphalt layer (years 2018, 2019 and 2020), obtaining a characteristic deflection of 75.02×10^{-2} mm, which is less than the admissible deflection 133.5 x 10 ^ -2 mm and an average radius of curvature 138.96 x 10 ^ -2 mm, greater than the minimum established (100 m), a good behavior of the subgrade and the 92.6% have a good pavement behavior. In other words, in the fourth study point, within the 7.4% bad behavior of the pavement, the sealing of cracks is required, according to the CONREVIAL method. Laboratory tests (bearing capacity) were carried out at critical points, to evaluate by analytical expression and the BISAR 3.0 Program by the SHELL method, through data processing and analysis, which allowed us to determine the structural behavior of the pavement. The allowable deflection of 1.1616 mm, the vertical compression stress and deformation on the subgrade comply with rut and deflection control. But the radial tensile deformation at the base of the asphalt layer does not comply, therefore it does not comply with the fatigue control.

Keywords: Behavior, deflections, bowls, elastic, stresses, deformations, compression, traction.

INTRODUCCIÓN

La presente investigación Comportamiento estructural del pavimento mediante recuperación elástica utilizando deflexiones medidas con viga Benkelman, red vial Moquegua MO 108 (2 Km), está orientada evaluar el comportamiento estructural del pavimento flexible, mediante método CONREVIAL y SHELL.

Dicho estudio se ciñe en los lineamientos básicos en concordancia con el "Manual de elaboración de tesis, trabajos de suficiencia profesional y artículos científicos" de la Universidad José Carlos Mariátegui.

El capítulo I, comprende la descripción del problema, objetivos, justificación técnica, normas legales, variables e hipótesis.

En el capítulo II contiene los antecedentes de la investigación local, nacional e internacional, bases teóricas, definición de términos, análisis de la capacidad estructural mediante las metodologías de CONREVIAL y SHELL.

En el capítulo III se considera aspectos metodológicos, descripción del tipo de investigación, diseño, delimitación de la población y muestras a considerar y la descripción de los instrumentos de recolección de datos.

En el capítulo IV presentamos los resultados, la contrastación de hipótesis y discusión de los resultados.

El capítulo V contiene las conclusiones y recomendaciones orientada a aportar al conocimiento para la ingeniería vial e ingeniería de mecánica de pavimentos.

CAPÍTULO I

PROBLEMA DE INVESTIGACIÓN

1.1 Descripción de la Realidad del problema

El estudio del comportamiento estructural del pavimento flexible se ha realizado en el tramo ejecutado por el proyecto: SNIP 50 669 "Mejoramiento de la red vial regional Moquegua – Arequipa, tramo MO-108: Cruz de Flores, distritos Torata, Omate, Coalaque, Puquina, límite regional pampa Usuña, Moquegua, Tramo AR-118: distritos Polobaya, Pocsi, Mollebaya, Arequipa"; en la modalidad de administración directa, siendo la entidad ejecutora el gobierno regional de Moquegua, gestión 2015 – 2018, comprende las regiones de Moquegua, Ruta N° MO-108 – y Arequipa, Ruta N° AR-118, ubicadas en el tramo II Km 15+000 – Km 35+000, (Otora – San Juan San Sanjone); siendo el punto de inicio Km 23+000 y el punto final Km 25+000 de la Ruta N° MO-108 Moquegua, el tramo de estudio tiene una longitud de 2 Km.

En efecto, la evaluación estructural de pavimentos consta principalmente en la determinación de la capacidad de soporte del sistema pavimento-subrasante en una estructura vial existente, en cualquier instante de su vida de servicio para fijar la cuantificación de necesidades en la rehabilitación, cuando el pavimento se aproxima al fin de su vida útil o cuando el pavimento va a cambiar su función. El análisis estructural del pavimento se puede definir en cualquier punto del modelo estructural los esfuerzos, deformaciones y deflexiones de los pavimentos.

Además, los procedimientos que son utilizados en las infraestructuras viales en el Perú y el Mundo tienen ventajas y desventajas en cuanto al pavimento flexible; es así que, la región Moquegua se interconecta con sus provincias, distritos y otras regiones a través de trochas carrozables, afirmadas y asfaltadas, algunos tramos se encuentran deterioradas; por consiguiente, las consecuencias se incrementan en el tiempo y los costos de traslado que no garantizaría en la seguridad vial.

Atendiendo a estas consideraciones, el problema de la infraestructura vial en la región de Moquegua específicamente en la red vial regional de Moquegua MO-108 en el tramo Otora – San Juan San June de Km 23+000 al Km 25+000 una longitud de 2 Km.; aun cuando, surge sospechas de supuestas deficiencias en el proceso constructivo, la mala calidad de los materiales empleados y el inadecuado control de calidad. Tomando consideración las fallas que pueden ocasionar como: las fisuras longitudinales, fisuras en media luna (fisuras con tendencia al piel de cocodrilo), fisuras de borde del pavimento.

Figura 1. Fisura longitudinal

Figura 2. Fisura en media luna y fisuras con tendencia al piel de cocodrilo.

Figura 3. Fisura de borde

Dicho tramo fue ejecutado en el periodo 2015 a 2018 por el gobierno regional Moquegua en la modalidad de administración directa.

En relación con las implicaciones, optamos realizar el estudio de evaluación del comportamiento estructural del pavimento, por la necesidad de conocer el comportamiento de los estados tensionales en los cuencos de deflexiones en los puntos de aplicación de las cargas de tránsito a un año de serviciabilidad en la red vial.

1.2 Definición del problema

1.2.1 Problema general.

¿Cómo será el comportamiento estructural del pavimento mediante recuperación elástica utilizando deflexiones medidas con Viga Benkelman, red vial Moquegua MO-108 (2 Km.)?

1.2.2 Problemas derivados o específicos.

- PE1: ¿Cuáles son las deflexiones medidas con Viga Benkelman en la red vial Moquegua MO-108 (2 Km.)?.
- **PE2**: ¿Cuál es el tipo de cuenco de deflexiones de la estructura del pavimento en la red vial Moquegua MO-108 (2 Km.)?.
- **PE3**: ¿Cuál será la recuperación elástica de la estructura del pavimento en la red vial Moquegua MO-108 (2 Km.)?.

1.3 Objetivos de la investigación

1.3.1 Objetivo general.

Determinar el comportamiento estructural del pavimento mediante recuperación elástica utilizando deflexiones medidas con Viga Benkelman, red vial Moquegua MO-108 (2 km.).

1.3.2 Objetivo específico.

- **OE1:** Determinar las deflexiones medidas con Viga Benkelman en la red vial Moquegua MO-108 (2 Km).
- **OE2:** Determinar el tipo de cuenco de deflexiones de la estructura del pavimento en la red vial Moquegua MO-108 (2 Km).
- **OE3:** Determinar la recuperación elástica de la estructura del pavimento en la red vial Moquegua MO-108 (2 Km).

1.4 Justificación

La evaluación técnica a través del método CONREVIAL consiste en la medición de deflexiones sobre la carpeta asfáltica terminada, que permite analizar las deformaciones y la curvatura; sin duda, la deflexión característica obtenida se compara con la deflexión admisible para el número de repeticiones de ejes equivalentes de diseño. Asimismo, la evaluación por el método SHELL permite analizar los comportamientos de los esfuerzos, deformaciones y deflexiones a fin de determinar si se cumple los parámetros del control de fatiga, ahuellamiento y deflexiones, para buen comportamiento estructural del pavimento. La justificación legal se basa a la conformidad con la Ley N° 29370 Ley de Organización y Funciones del Ministerio de Transporte y Comunicaciones, la evaluación estrictamente con MTC: EG-2013, MTC E 1002, sección: suelos y pavimentos de Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos -R.D. N° 10-2014-MTC/14, ASTM D 4695-03 y AASHTO T 256-01.

1.5 Alcances y limitaciones

El alcance de la presente investigación comprende la determinación del comportamiento estructural del pavimento mediante recuperación elástica, deflexiones y cuenco de deflexiones.

Se hace necesario resaltar, las limitaciones para el estudio de la presente tesis siendo las de mayor connotación: el traslado de muestras para ensayos de análisis granulométrico de suelos gruesos y finos, límites de ATTERBERG, clasificación de suelos según SUCS y AASHTO, proctor modificado y CBR. ; en tanto que, para el pesaje en balanza del camión tuvo que ser trasladada a la ciudad de Tacna, frente a la inexistencia en la ciudad de Moquegua, el ensayo de medición de la deflexión tuvo cierta limitación por la distancia, desde Moquegua se desplaza hasta el km 45 de la carretera binacional Ilo – Desaguadero, y desde dicho lugar denominado Cruz de Flores del distrito de Torata, inicia el km 0+000 y se recorre hasta tramo II km 23+000.

1.6 Variables

1.6.1 Identificación de Variables.

1.6.1.1 Variable Independiente.

Comportamiento Estructural

1.6.1.2 Variable Dependiente.

Deflexiones

1.6.2 Definición de las Variables.

1.6.2.1 Comportamiento Estructural.

La evaluación del comportamiento estructural por método CONREVIAL se basa fundamentalmente, en definir la capacidad de soporte del modelo estructural de pavimento, a través de la evaluación con ensayo de deflexiones se determina el comportamiento de la subrasante y del pavimento.

Según se ha visto, mediante el método SHELL se determina el comportamiento de los estados de esfuerzos, deformaciones y deflexiones actuantes en una estructura de pavimento; para dicho análisis se opta una estructura típica de pavimento flexible compuesta de cuatro capas: capa asfáltica, base granular, subbase granular y subrasante; de modo que, la estructura cumple o no con los criterios de diseño: fatiga, deformación y deflexión, la evaluación permite analizar el comportamiento de los esfuerzos y deformaciones (radial, tangencial y vertical) en todo su espesor del modelo estructural del pavimento, del mismo modo se analiza el comportamiento de la deflexión en todo el espesor. Lo anterior permite conocer los estados tensionales en cualquier punto del eje de carga de un sistema elástico multicapa de pavimento y su influencia en el diseño a fin de cumplir criterios de diseño. (Higuera, 2006, pp. 22-23).

1.6.2.2 Deflexiones.

La deflexión de un pavimento se determina como el valor que representa la respuesta estructural ante la aplicación de una carga vertical externa; también se define como el desplazamiento vertical del paquete estructural de un pavimento

ante la aplicación de una carga, generalmente producida por el tránsito vehicular. Cuando se aplica una carga en la superficie no solo se desplaza el punto debajo de ella, produciendo una deflexión máxima, sino que también se desplaza una zona alrededor del eje de aplicación de la carga, que se denomina cuenco de deflexión.

Como puede observarse, la deflexión permite ser correlacionada con la capacidad estructural de un pavimento, de manera que, en un modelo estructural, si la deflexión es alta la capacidad estructural del modelo de pavimento es débil o deficiente y, lo contrario, si la deflexión es baja quiere decir que el modelo estructural del pavimento tiene buena capacidad estructural. (Higuera, 2016, p.189).

1.6.3 Operacionalización de variables.

Tabla 1

Operacionalización de las variables

Variable	Dimensiones	Indicadores	
V.D.			
Comportamiento estructural	Capacidad de recuperación	Curva extensa y poco profunda	
		Curva extensa profunda	
		Curva corta y poca profunda	
V.I.		Curva corta y profunda	
Deflexiones	Deformación Vertical	mm.	

1.7 Hipótesis de la investigación

1.7.1 Hipótesis general.

El Comportamiento estructural del pavimento mediante recuperación elástica utilizando deflexiones medidas con Viga Benkelman, en la red vial Moquegua MO-108 (2 km.) es óptimo con un buen comportamiento de la subrasante y del pavimento.

1.7.2 Hipótesis específicas.

- **HD1:** Las deflexiones medidas con Viga Benkelman en la red vial Moquegua MO-108 (2 Km.) cumplen con el parámetro de deflexión admisible.
- HD2: El Tipo de cuenco de deflexiones de la estructura del pavimento en la red vial Moquegua MO-108 (2 Km.) es de TIPO I, (curva extensa y poco profunda).
- HD3: La recuperación elástica de la estructura del pavimento en la red vial Moquegua MO-108 (2 Km.) luego de la carga sometida no es al 100%.

CAPÍTULO II

MARCO TEÓRICO

2.1 Antecedentes de la investigación

2.1.1 Ámbito internacional.

López (2016) en la tesis de grado "*El diseño de pavimentos flexibles, su comportamiento estructural, e incidencia en el deterioro temprano de la red vial en la provincia de Tungurahua*" considera como objetivo elaborar un modelo de diseño de pavimentos para mejorar su comportamiento estructural y evitar el deterioro temprano de la red vial en la provincia de Tungurahua y los objetivos específicos:

Determinar y estandarizar los parámetros de diseño de pavimentos, con posibles correcciones para el temprano deterior de pavimento.

Proponer correcciones en las estructuras viales para posteriores diseños y evitar daños tempranos y severos en las capas de rodadura.

En efecto, las posibles conclusiones en las vías que cuentan con una estructura de pavimento: Carpeta asfáltica, capa de base y subbase, podrán ser sometidas a

procesos de rehabilitación mediante un refuerzo de su estructura o una sobre capa. (pp. 6-27).

Ávila y Albarracín (2014) en tesis de grado "Evaluación de pavimentos en base a método no destructivos y análisis inverso caso de estudio: vía Chicti – Sevilla de Oro", analiza la factibilidad y eficiencia de la deflectometría de impacto para evaluar la capacidad portante de la estructura del pavimento a través de la aplicación de metodología de análisis inverso, para la cual se hace un enfoque a la ingeniería de pavimentos y a la evaluación de los mismos para cualificar y cuantificar el nivel de deterioro de un pavimento existente a través de indicadores de estado; por consiguiente, se estudia una de las técnicas no destructivas para realizar una evaluación estructural de la vía mediante el uso de FWD, con datos obtenidos y procesados con ello analizar las deflexiones mediante secciones homogéneas y técnicas de análisis inverso propuesta por AASHTO 93, LUKANEN, YONAPAVE Y ROHDE. La adecuada caracterización del sistema de pavimento – subrasante fue correlacionada con los software Ansys y Evercalc a través del módulo resiliente de la subrasante, y la capacidad estructural mediante el concepto de deflexión característica. (p. 1).

Cordero, Bravo (2018) en tesis de grado "Análisis estructural del pavimento flexible en la calle la Prensa entre By pass y avenida las Orquídeas del Cantón Portoviejo" realizó un análisis estructural del pavimento flexible en dicho tramo, y la evaluación actualizada de toda la estructura del pavimento de la vía antes mencionada, en donde se analizaron factores viales fundamentales como son: el estudio de tráfico, de suelo evaluación a nivel estructural y funcional de la estructura del pavimento, estas actividades previas permiten generar la propuesta de intervención vial mediante el diseño de la estructura del pavimento flexible aplicando el método AASTHO 93. (p. xviii).

2.1.2 Ámbito nacional.

Carahuatay (2015) en tesis de grado "Determinación del comportamiento estructural del pavimento flexible de la carretera San Migue – Pablo, tramo San Miguel – Sunuden; mediante el análisis deflectométrico" el objetivo es determinar el comportamiento estructural haciendo uso del análisis deflectométrico, mediante Viga Benkelman de doble brazo; donde se determinó el comportamiento estructural de las capas del pavimento flexible, indicándonos que dicha carretera presenta actualmente un mal comportamiento estructural. Debido a que la deflexión promedio es mayor a la deflexión admisible. Por lo que no se garantiza una estructura de comportamiento satisfactorio. (p. xvii)

Ramos (2017) en tesis de grado "Evaluación del estado del pavimento por deflectometría e índice de rugosidad internacional de la carretera: Puno – Vilque – Mañazo – 4 km críticos – 2015" el propósito de la investigación es evaluar del estado del pavimento por deflectometría e índice de rugosidad internacional. Para ello fue necesario conocer la medida en que se encuentran las deflexiones características, admisible y el índice de condición del pavimento (PCI) y en qué medida varía el índice de regularidad internacional en los 4 kilómetros más críticos del pavimento.

El desarrollo del proyecto permitió determinar los valores de deflexión característica promedio en ambos carriles no superan la deflexión admisible, lo cual nos lleva entender que el pavimento está en buenas condiciones y se observó un desgaste considerable quedando evidenciado con el valor del IRI, el cual indica que no cumple con las especificaciones técnicas. (p. 12)

Cubas (2017) en tesis de grado "*Comportamiento estructural del pavimento flexible en la vía de evitamiento sur – Cajamarca utilizando las deflexiones medidas con la Viga Benkelman*" el objetivo principal es determinar de comportamiento estructural del pavimento flexible, este trabajo de investigación comprendió un desarrollo progresivo de diferentes etapas que se inicia desde el reconocimiento, levantamiento topográfico, estudio de tránsito, medición de las deflexiones.

En tanto que, para la evaluación de la capacidad estructural del pavimento se midieron las deflexiones cada 50 m, de acuerdo con el procedimiento indicado por la norma MTC E102-2000 "Medida de la deflexión y determinación del radio curvatura de un pavimento flexible empleando la Viga Benkelman", utilizando el método CONREVIAL obteniéndose una deflexión característica mayor que la deflexión admisible y un radio de curvatura promedio mayor al mínimo establecido por el método (100 mm), en conclusión, el pavimento no presenta un adecuado comportamiento estructural. (p. xiii).

Balarezo (2017) en tesis de grado *"Evaluación estructural usando viga benkelman aplicada a un pavimento*" cuyo objetivo es dar a conocer la evaluación estructural con viga Benkelman como inicio de un plan de evaluación de mantenimientos para

los gobiernos locales, dicha evaluación dará a conocer el estado del pavimento en términos en términos de parámetros de la sub rasante.

Según se ha citado, esta evaluación es aplicada a un tramo del pavimento flexible, con la finalidad de saber se encuentra bien estructuralmente (Esg. CBR), y con el aumento de flujo vehicular en los próximos años (20) que refuerzo estructural requerirá el pavimento para garantizar su serviciabilidad como parte de un mantenimiento. El refuerzo de carácter asfáltico, es decir se obtendrá un espesor de asfalto que será necesario para reforzar estructuralmente el pavimento; investigación que aporta a ser tomada como ejemplo para los gobiernos locales, al evaluar estructuralmente con la Viga Benkelman y al diseñar un refuerzo estructural de asfalto. (pp. 4-5).

Jaen y Ticona (2019) en tesis de grado "Análisis deflectométrico por etapas y comparación con el tipo de material de cada capa estructural en la obra construcción y mejoramiento de la carretera Matarani-Punta de Bonbón tramo km 2+000 al km 7+000" en donde propone una metodología de diagnóstico de la estructura del pavimento, basada en el cuenco de deflexiones. Para la evaluación estructural se utilizó la Viga Benkelman para la lectura de las deflexiones, radio de curvatura y los valores del módulo resiliente de la sub rasante determinado según modelo de capas elásticas. (p. iii)

Fernández (2020) en tesis de grado "Determinación del comportamiento estructural del pavimento flexible de la carretera Cajamarca- Celendín-Balsas, tramo Chaquilpampa-Santa Rosa de Chaquil, mediante el análisis

15

deflectométrico " el objetivo principal fue determinar el comportamiento estructural del pavimento flexible, un tramo de 5 km de dicha carretera. La vía que fue rehabilitada y mejorada en el año 2012; es evidente que, la evaluación del pavimento es realizada utilizando el método CONREVIAL obteniéndose la deflexión característica menor a la deflexión admisible y un radio de curvatura promedio, mayor al mínimo establecido por el método (100 mm) llegando a la conclusión que dicho pavimento actualmente tiene un comportamiento estructural es bueno (p. xi).

2.1.3 Ámbito local.

Barrios (2016) en tesis de grado "Evaluación, deformación y rehabilitación viral cruce Panamericana Sur, Rotonda-Ovalo Cementerio, Binacional en la Región Moquegua" comprende la evaluación de la situación actual en que se encuentra la superficie de la carpeta asfáltica, por medio del cálculo por deflectometría utilizando la Viga Benkelman y determinar el IRI por el ensayo de merlín; donde fundamenta ciertos conceptos básicos en que se apoya este método, así como también conceptos básicos sobre el diseño, construcción, mantenimiento y vida útil de los pavimentos asfálticos; por otro lado, es necesario también acotar la poca cantidad de información sobre este tema por lo cual en algunos casos se asumió hipótesis de difícil comprobación a través de los datos disponibles de campo. Los pavimentos se planean, diseñan y construyen para que estén en servicio, en condiciones adecuadas, un determinado número de años a los cuales se conoce

sometidos a la acción de tránsito, factores climáticos y otros, que lo van deteriorando, presentando diferentes condiciones de servicio a través de los años.

Dentro de este marco, la tesis está orientada básicamente a realizar un estudio y evaluación del pavimento asfáltico mediante el método no destructivo, debido a diversos factores que favorecen su uso. El pavimento asfáltico y cuyo periodo de servicio o vida útil es corta. Se ha desarrollado y descrito una metodología para la evaluación estructural basada en la deformación del pavimento, el estado de la superficie de la capa de rodadura se encuentra en un deterioro total (p. xiii).

2.2 Bases teóricas

Las primeras teorías científicas explicadas en elasticidad:

Ley de Hooky (1678): Según la ley conocida como ley de Hooky. donde "La fuerza que devuelve un resorte a su posición de equilibrio es proporcional al valor de la distancia que se desplaza de esa posición".

En tanto que, en la ecuación de Navier 1821: propone las ecuaciones de la teoría de la elasticidad línea, es el estudio de sólidos elásticos lineales, en que las tensiones y deformaciones y desplazamientos estén relacionadas linealmente (linealidad material).

Así como, en Teorema de Rivlin-Ericksen (1955): se debe fundamentalmente a Ronald Rivlin y establece una limitación importante a la ecuación constitutiva de un sólido deformable isótropo y objetivo.

Mientras tanto, en Teoría elástica lineal de Boussinesq (1885): Desarrolló una expresión matemática para obtener el incremento de esfuerzo en una masa semi infinita de suelo debido a la aplicación de una carga puntual en su superficie. Desarrolló, para un suelo homogéneo, isótropo y elástico, la distribución de las tensiones bajo placas cargadas.

Por otra parte, en Teoría multicapas elástica Burmister (1943): Propuso dicha teoría para analizar el estado de esfuerzos de una estructura de pavimentos, primero propuso la solución basada en dos capas y después ésta fue extendida a "n" capas.

Método de Kentucky (1958): Se basó en CBR y cargas de ruedas equivalentes.

Conceptos de análisis elástica multicapa Dorman y Metcalf (1965): Los principios que se basan en la limitación de las deformaciones en la superficie del asfalto y la deformación permanente en la subrasante.

Método SHELL (1963): Diseño para pavimentos flexibles basadas en un método analítico con criterios derivados de pruebas de laboratorio y del ensayo vial AASHTO.

Método CONREVIAL (1982): Se ha desarrollado una metodología para la evaluación estructural basada en deformabilidad del pavimento, el estado evidenciado en su superficie y en las características de su estructura.

Modelo de Hogg (1944): Presentó la solución matemática del modelo que representa al pavimento como una placa delgada con una cierta rigidez a la flexión y horizontalmente infinita, sustentada por una capa elástica homogénea e isotrópica.

2.3 Definición de términos

2.3.1 Componente de la estructura del camino.

Figura 4. Sección típica de la infraestructura del camino. Fuente: Ministerio de Transporte y Comunicaciones, 2014

2.3.2 Pavimento.

Diferentes autores tienen concepto sobre la estructura vial (pavimento), tales como:

Montejo (2002) afirma que, un pavimento está constituido por un conjunto de capas superpuestas, relativamente horizontales, que se diseñan y construyen técnicamente con materiales apropiados y adecuadamente compactados. Estas estructuras estratificadas se apoyan sobre la subrasante de una vía obtenida por el movimiento de tierras en el proceso de exploración y que han de resistir adecuadamente los esfuerzos que las cargas repetidas del tránsito le transmiten durante el período para el cual fue diseñada la estructura del pavimento. (p. 1).

Rengifo (2014) define que, un pavimento es una estructura cuya finalidad es permitir el tránsito de vehículos y puede estar conformada por una o varias capas superpuestas. Las principales funciones que debe cumplir un pavimento son proporcionar una superficie de rodamiento uniforme, de color y textura apropiados, resistente a la acción del tránsito, a la del intemperismo y otros agentes perjudiciales, así como transmitir adecuadamente a las terracerías los esfuerzos producidos por las cargas impuestas por el tránsito. Además debe ser resistente al desgaste debido a la abrasión producida por las llantas y tener buenas condiciones de drenaje. (p. 3).

2.3.2.1 Pavimento flexible.

Bonett (2014) el pavimento flexible es una estructura formada por varias capas como lo son la sub-rasante, la sub base, la base y la carpeta asfáltica; cada una con una función determinada, las cuales en conjunto tienen los siguientes propósitos:

- Resistir y distribuir adecuadamente las cargas producidas por el tránsito. El pavimento flexible debe estar constituido de manera tal que las cargas, producidas por el tránsito, no provoquen deformaciones de ningún tipo en su estructura, siendo de mucha importancia el espesor que el mismo tenga.
- Tener la impermeabilidad necesaria. Este pavimento debe ser lo suficientemente impermeable para impedir la infiltración que puede darse por parte del agua, afectando la capacidad soporte del suelo. De esto se concluye que es de mucha importancia la existencia de un drenaje adecuado.
- Resistir la acción destructora de los vehículos. El pavimento debe ser resistente respecto al desgaste y desprendimiento de partículas que se obtiene como consecuencia del paso de los vehículos.
- Resistir los agentes atmosféricos. Como un efecto continuo de su presencia, los agentes atmosféricos provocan la meteorización y alteración de los materiales que componen el pavimento, reflejándose este problema, en la vida económica y útil del mismo.
- Poseer una superficie de rodadura adecuada, que permita fluidez y comodidad hacia el tránsito de vehículos. La superficie del pavimento, debe proporcionar un aspecto agradable, seguro y confortable, de manera que el deslizamiento de los vehículos sea óptimo. Esta superficie, que debe ser lisa, también debe ser antideslizante en caso de estar húmeda.

- Ser flexible para adaptarse a ciertas fallas de la base o sub-base. La flexibilidad del pavimento es muy importante en caso de presentarse asentamiento en alguna de sus capas; pudiendo así adaptarse a las pequeñas fallas sin necesidad de reparaciones costosas. (p. 5).

Figura 5. Estructura del pavimento flexible

a. Subrasante.

Se le conoce también como "terreno de fundación", conformado por suelo natural o material de préstamo compactado con una óptima humedad. Luego de ser compactada debe asegurar que tendrá la resistencia adecuada, sirve de apoyo o fundación de la estructura del pavimento.

La capacidad de la subrasante es de suma trascendencia, porque proporciona una parte sustancial de la capacidad de la estructura del pavimento. Siempre y cuando cumpla los requisitos de estabilidad, incompresibilidad y resistencia a la expansión y contracción por efectos de la humedad. Los esfuerzos producidos por las cargas vehiculares en esta capa disminuyen por la profundidad.

b. Sub base.

Es la capa de material seleccionado debidamente acondicionada entre la capa subrasante y la capa de base; consiste de una capa compactada de material granular, tratado o sin tratar o de capa de suelo tratado con un aditivo apropiado. Además de su posición en el pavimento, se distingue del material de base por tener menos estricto de especificaciones1 en la resistencia, plasticidad y gradación. (Aashto, 1993, p. 24).

Así mismo, la disminución de deformaciones: "Algunos cambios volumétricos de la capa subrasante, generalmente asociados a cambios en su contenido de humedad o a cambios extremos de temperatura pueden absorberse con la sub base, impidiendo que dichas deformaciones se reflejen en la superficie de rodamiento" (Higuera, 2011, p. 21).

Distribución de esfuerzos. En esta capa se disipa y distribuye los esfuerzos propalados por la base granular, de tal forma que las compresiones verticales sean inferiores a las admisibles y adecuadas en la subrasante.

Resistencia. Esta capa debe resistir o soportar las tensiones propaladas por las cargas de los vehículos mediante las capas superiores y transmitirlos a un nivel apropiado a la capa subrasante.

c. Base.

Es la capa inferior a la carpeta asfáltica, esta capa es la proporción de la estructura del pavimento que consiste de agregados como piedra, escoria, grava chancada y arena, o combinaciones. Las especificaciones para materiales de base son más estrictas que el material de sub base.

Drenaje: "En muchas ocasiones la base debe drenar el agua que se introduzca a través de la carpeta o por las bermas, así como impedir la ascensión capilar" (Higuera, 2011, p. 22).

Distribución de esfuerzos. Es la función primordial de la base granular en el soporte estructural de un pavimento por lo que transmite a la sub base y a la subrasante los esfuerzos o tensiones ocasionados por el tránsito.

Resistencia. Es la función primordial de la base granular es el soporte estructural de un pavimento por lo que transmite a la sub base y a la subrasante los esfuerzos o tensiones ocasionados por el tránsito.

d. Carpeta asfáltica.

Superficie de rodamiento. Es la capa superficial de una estructura del pavimento flexible se compone de una aleación de agregados minerales y materiales bituminosos construida en la parte superior de la base. La cual facilita una superficie

homogénea, estable y segura al tráfico, de textura y color adecuado y soportar los efectos abrasivos del tráfico.

Impermeabilidad. "Hasta donde sea posible, debe impedir el paso del agua al interior del pavimento" (Montejo, 2002, p. 5).

Distribución de esfuerzos. Higuera (2011) afirma que, la carpeta asfáltica está sometida básicamente a esfuerzos de compresión y tensión. La función principal es la de disipar los esfuerzos horizontales generado por las cargas de los vehículos, pasando de un valor positivo (de compresión) en la superficie a uno negativo (de tracción) en la fibra inferior; de manera que no se produzca el agrietamiento de la capa. (p. 22).

Resistencia. "Su resistencia a la tensión complementa la capacidad estructural del pavimento" (Montejo, 2002, p. 5).

2.3.3 Propiedades físicas y mecánicas de los materiales.

2.3.3.1 Granulometría.

"Dicho ensayo tiene como objetivo de determinar la distribución de partículas de agregados grueso y fino en una cierta muestra seca de peso conocido. Se aplica para determinar la gradación de materiales propuestos para uso de agregados" (Ministerio de Transportes y Comunicaciones, 2016, p. 303).

Mientras tanto, la composición final de los materiales presentará una granulometría continua, bien graduada y según los requerimientos de una de las franjas granulométricas que se indican en el cuadro, para las zonas con altitud iguales o mayores a 3000 msnm se deberá seleccionar la gradación "A" (Ministerio de Transportes y Comunicaciones, 2013, p. 369).

Tabla 2

Tamiz	Porcentaje que pasa en peso				
	Gradación A	Gradación B	Gradación C	Gradación D	
50 mm. (2")	100	100			
25 mm. (1")		75-95	100	100	
9,5 mm. (3/8 ")	30-65	40-75	50-85	60-100	
4,75 mm. (N° 4)	25-55	30-60	35-65	50-85	
2,0 mm. (N° 10)	15-40	20-45	25-50	40-70	
425 μm. (N° 40)	8-20	15-30	15-30	25-45	
75 μm. (N° 200)	2-8	5-15	5-15	8-15	

<u>ה יי</u> מ	1 /	1	1
Reauerimientos	granulometricos	nara nase	granula
acquer inneritos	Sichulonichicob	para case	Sichiller

Fuente: Ministerio de Transportes y Comunicaciones, 2013

Referencias normativas:

- MTC E 204: Análisis granulométrico de agregados gruesos y finos.
- NTP 400,012: Análisis granulométrico del agregado fino, grueso y global.
- MTC E 202: Cantidad de material fino que pasa el tamiz de 75 μ m. (N° 200) por lavado.
- NTP 400,018: Método de ensayo normalizado para determinar materiales más finos que pasan por el tamiz normalizado cantidad de 75 μm. (N° 200) por lavado de agregados.

2.3.3.2 Límites de ATTERBERG.

a. Determinación de límite líquido de los suelos:

Es el contenido de humedad expresado en porcentaje, para lo cual el suelo se halla en el límite entre los estados líquido y plástico. Arbitrariamente se designa como el contenido de humedad al cual el surco separador de dos mitades de una pasta de suelo se cierra a lo largo de su fondo en una distancia de 13 mm (1/2 pulg) cuando se deja caer la copa 25 veces desde una altura de 1 cm a razón de dos caídas por segundo. (Ministerio de Transportes y Comunicaciones, 2016, p. 67).

Referencias normativas:

- MTC E 110. Determinación del límite liquido de los suelos.
- NTP 339,129: SUELOS. Métodos de ensayo para determinar el límite líquido,
 límite plástico e índice de plasticidad de suelos.
- b. Determinación de límite plástico (L.P.) de los suelos e índice de la plasticidad (I. P.):

Se determina el porcentaje de límite plástico (L.P.) a la humedad más baja con la que pueden formarse barritas de suelo de unos 3,2 mm (1/8") de diámetro, sin que dichas barritas se desmoronen. Los plásticos de un suelo pueden utilizar con el contenido de humedad natural de un suelo para expresar su consistencia relativa o índice de liquidez. (Ministerio de Transportes y Comunicaciones, 2016, p. 72).

Referencias normativas:

- MTC E 111. Determinación del límite plástico (L.P.) de los suelos e índice de plasticidad (I.P.).
- NTP 339,129. SUELOS. Métodos de ensayo para determinar el límite líquido,
 límite plástico e índice de plasticidad de suelos.

2.3.3.3 Clasificación de suelos según SUCS y AASHTO.

Los suelos con semejantes propiedades físicas se clasifican en grupos y subgrupos en su comportamiento, para dicha clasificación se utiliza dos sistemas para su distribución por tamaño de grano y plasticidad de los suelos. Éstos son el sistema unificado de clasificación de suelos y el sistema de clasificación AASHTO.

a. Sistema unificado de clasificación de suelos.

Suelos de grano grueso de tipo grava y arena son menos del 50% pasando por la malla No. 200. Los símbolos de grupo comienzan con un prefijo G o S. G. significa grava o suelo gravoso y S arena o suelos arenosos.

Los suelos de grano fino con 50% o más pasando por la malla No. 200. Los símbolos del grupo comienzan con un prefijo M, que significa limo inorgánico, C para arcilla inorgánica u O para limos y arcillas orgánicos. El símbolo Pt se usa para turba, lodos y otros suelos altamente orgánicos. (M. Das, 2001, p. 39).

Otros símbolos son también usados para la clasificación:

W: Bien graduada.

P: Mal graduada.

- L: Baja plasticidad (límite líquido menor que 50)
- H: Alta plasticidad (límite líquido mayor que 50)

b. Sistema de clasificación AASHTO.

Según el presente sistema, el suelo se clasifica en siete grupos mayores: A-1 al A-7. Los suelos clasificados en los grupos A-1, A-2 y A-3 son materiales granulares, donde 35% o menos de las partículas pasan por la criba No. 200. Los suelos de los que más del 35% pasan por la criba No. 200 son clasificados en los grupos A-4, A-5, A-6 y A-7. La mayoría están formados por materiales tipo limo y arcilla. (Das, 2001, p. 35).

2.3.3.4 Proctor modificado.

Este ensayo abarca los procedimientos de compactación a fin de determinar:

- La máxima densidad seca (gr/cm³), se puede obtener en un suelo a través del método de compactación según de su contenido de humedad.
- Optimo contenido de humedad (%), da el más alto peso unitario en seco (densidad). En general dicha humedad decrece al aumentar la compactación.

Referencias normativas:

- MTC E 115. Compactación de suelos en laboratorio utilizando una energía modificada (proctor modificado).
- NTP 339,141. Suelos. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada (2700 kN-m/m³ (56 000 pielbf/pie³).
- ASTM D 1557: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort ((2700 kN-m/m³ (56 000 pielbf/pie³)).

Figura 6. Gráfica de la curva de compactación proctor modificado

2.3.3.5 CBR (california bearing ratio).

Este método fue propuesto en 1929 por los ingenieros T. E. Stanton y O. J. Porter del departamento de carreteras de California. Desde ese tiempo tanto en Europa como en América, el método CBR se ha generalizado y es una forma de clasificación de un suelo para ser utilizado como subrasante o material de base en la construcción de carreteras.

Al respecto, la finalidad de este método de ensayo se usa para evaluar la resistencia potencial de subrasante, sub base y material de base para usar en pavimentos de vías y campos de aterrizaje. También se dice que mide la resistencia al corte de un suelo bajo condiciones de humedad y densidad controlada. El ensayo permite obtener un número de relación de soporte, que no es constante para un suelo dado sino que se aplica solo al estado en el cual se encontraba el suelo durante el ensayo.

Entonces, "CBR es la relación entre la resistencia a la penetración requerida para que un pistón de 3 pulg² de área penetre 0,1 pulg dentro de un suelo 1000 psi que es la resistencia a la penetración de una muestra patrón" (Minaya, Ordóñez 2006, p. 7).

$CBR = \frac{Resistencia a la penetración (psi)requerida para penetrar 0.1 pulg}{1,000 lb/pulg^2} \ge 100$

- a. Referencias normativas.
- MTC E 132. CBR de suelos (laboratorio)
- ASTM D 1883. Standard test method for CBR (California bearing ratio) of laboratory – compacted soils.

2.3.4 Tipos de fallas en pavimento flexibles.

Durante el periodo de serviciabilidad de un pavimento flexible, las causas se presentan de diversos orígenes afectando la condición de la superficie de carpeta asfáltica, lo cual compromete su función de ofrecer a los usuarios en un determinado momento. La posibilidad de proveer un manejo seguro, confortable, cómodo y económico. Las causas de falla de un pavimento a saber son:

- Incremento del tránsito con respecto a las estimaciones del diseño de pavimento original.
- Deficiencias en el proceso constructivo, la calidad de los materiales empleados y control de calidad antes, durante y post construcción de la infraestructura vial.
- Diseño de pavimento deficiente.
- Factores climáticos imprevistos.
- Insuficiencia de estructuras de drenaje superficial y/o subterráneo.
- Insuficiente o ausencia de acciones de mantenimiento y/o rehabilitación y fin del periodo de diseño del pavimento original.

No obstante, los dos tipos de fallas no están necesariamente relacionados, pero pueden establecerse que cuando se presenta una falla estructural también ocurrirá en un plazo aproximadamente corto la falla funcional. En ocasiones una falla funcional que no se atiende a su debido tiempo, puede también conducir a una falla estructural.

2.3.4.1 Falla funcional.

El índice de servicio se refiere principalmente a las condiciones de la superficie de la carpeta asfálticas (rodamiento); en tanto que, la estructura funcional en sí nos facilitará un tránsito cómodo a los usuarios y una superficie de rodamiento adecuada a las necesidades de este en su determinación o apreciación no intervendrán factores como diseño geométrico, estado de acotamientos, señalamiento.

Así como, la falla funcional en sí, se refiere a deficiencias superficiales del pavimento a las que se asocian precisamente el índice de servicio, que afectan en mayor o menor grado la capacidad de la vía en proporcionar al usuario un tránsito cómodo y seguro.

Figura 7. Pérdida de serviciabilidad en un pavimento flexible

Atendiendo a estas consideraciones, los aspectos más importantes del pavimento que intervienen en el valor del índice de servicio actual son:

- Las ondulaciones longitudinales.
- Las deformaciones transversales.
- La textura de la superficie
- El porcentaje de baches y áreas reparadas.
2.3.4.2 Falla estructural.

Es una deficiencia del pavimento que origina de inmediato o posteriormente una disminución en la capacidad de carga de este. En su etapa más avanzada, la falla estructural se manifiesta en la obstrucción generalizada del pavimento, a la que se incorpora precisamente el índice de servicio, no necesariamente implica una falla estructural, ya que lo primero es consecuencia de su incapacidad para soportar las cargas de vehículo.

En consecuencia, el reconocimiento de una falla es definir su tipo y la causa que ha generado, para lo cual es necesario llevar a cabo una identificación completo (detallada) de la zona fallada, que abarque las distintas partes que forman la estructura del pavimento y hacer una serie de estudios, sondeos, recabar antecedentes de la construcción. Para así poder definir el origen de los deterioros y corregirlos oportunamente. Es de vital importancia recalcar que se trate subsanar completamente la deficiencia que esté ocasionando fallas, ya que si no es atacado desde sus orígenes los desperfectos se incrementan rápidamente y después será mucho más costosa su reparación.

Carahuatay (2015) plantea que, las fallas estructurales tienen su principio en defectos en una o más de las capas que conforman la estructura del pavimento, las cuales están destinadas a resistir y compartir los esfuerzos impuestos por el tráfico; de modo que, a nivel de subrasante o suelo de fundación de pavimento lleguen los esfuerzos en mínimo valor y lo más distribuido posible. En estos casos la corrección de las fallas va dirigida al refuerzo de la estructura existente mediante la colocación de una capa cuyo espesor debe ser calculado en función de los requerimientos de las cargas de tráfico previstas para el nuevo periodo de tiempo de vida útil. La falla estructural se deriva de dos causas fundamentales. (p. 18).

Es evidente entonces, cuando la suficiencia o capacidad de deformación recuperación de los materiales que constituyen la estructura de pavimento flexible es "superada más allá del valor que definen las deformaciones recuperables por elasticidad rápido y/o instantánea y retardada, desarrollándose deformaciones constantes (ahuellamiento) en toda aplicación de las cargas, las que se acumulan modificando los perfiles de la carretera, inclusive valores que resultan intolerables para el bienestar, confianza y rapidez del tráfico y que pueden inducir el colapso de la estructura".

En efecto, cuando las deformaciones recuperables sean elevadas, los materiales y en específico las capas asfálticas sufren la rareza denominado agotamiento y/o fatiga cuando la cantidad de aplicaciones de las cargas pesadas es elevada, se traduce en disminución de sus características mecánicas. En caso la deformación horizontal por tracción en la parte inferior de las capas asfálticas al flexionar la estructura, puede exceder el límite crítico y se llega al principio del proceso de fisuramiento.

Como se puede inferir, las fallas podemos precisar tomando en consideración el elemento o bloque estructural en la que se produce:

- Fallas atribuibles a la carpeta asfáltica.

- Fallas producidas en la interface, capeta-base como efecto de una interacción.
 inadecuada, esto es, deficiente unión entre el material de base y la carpeta asfáltica.
- Fallas producidas en la base, sub-base o terracerías, como efecto de la Inestabilidad de una o diversas de estas capas.
- Fallas producidas por la reincidencia de cargas.
- Fallas provocadas por los agentes climatológicos.

En consecuencia, ambos tipos de fallas no están necesariamente interconectados; sin embargo, pueden establecerse cuando se presenta una falla estructural, además ocurrirá en un término más o menos corto la falla funcional. En ocasiones una falla funcional que no se atienda a su debido periodo, puede también llevar a una falla estructural.

2.3.5 Métodos de evaluación estructural.

La evaluación de pavimentos flexibles consiste fundamentalmente en la determinación de la capacidad resistente de la estructura vial existente, en cualquier instante de su vida útil y/o servicio; para cuantificar las necesidades de rehabilitación cuando la estructura se aproxime al fin de su vida útil o cuando la estructura va modificar su función de demanda de tráfico.

2.3.5.1 Métodos directos de auscultación.

La evaluación estructural en lo tradicional se recurre a la perforación de calicatas, a fin de obtener muestras para ensayos en el laboratorio, mediante dichos ensayos permitía realizar análisis de cada componente (capas) de los materiales independientemente, éste método directo de auscultación son métodos destructivos que deterioran la estructura del pavimento, la desventaja de éste método requiere más tiempo, costo elevado; por tanto, los métodos empleados en nuestro país son las:

- Calicatas o pozos a cielo abierto.
- Extracción de núcleos.

2.3.5.2 Métodos indirectos de auscultación.

Este método de acuerdo la nueva tecnología conocida no destructiva "NDT" (non destructive test) se fundamenta en la interpretación de las deflexiones medidas en la superficie de un pavimento; en donde se logra determinar la capacidad estructural del pavimento. El procedimiento de medición no es complejo y lo más primordial no va cambiar y/o alterar el equilibrio de la estructura, porque es una metodología "no destructiva". Dicha metodología se fundamenta básicamente en la información valiosa que nos proporciona la curva o cuenco de deflexiones para interpretar y/o analizar esta información cuantitativa, se compara el sistema Pavimento-Subrasante con un modelo matemático. Para cuyo efecto, la metodología NDT es un proceso basado en la interpretación de deflexiones de diseño inverso (retrocálculo) en vista de que se emplea la respuesta del sistema (pavimento-subrasante) para definir sus características estructurales.

En virtud de los resultados, la deformación elástica que experimenta el pavimento, al aplicar las cargas vehiculares y en sus contornos generando la magnitud de los esfuerzos verticales, deformaciones y deflexiones.

Figura 8. Esquema del comportamiento de cuenco de deflexiones

De las evidencias anteriores, el conocimiento de las deflexiones bajo la acción de carga es de gran utilidad para la ingeniería de diseño, por cuanto los pavimentos pueden ser concebidos como estructuras con cierta capacidad para absorber energía elástica el trabajo de deformación impuesto por cada carga circulante, y dicha energía hace que una vez retirada la carga se produzca una recuperación elástica.

Dadas las condiciones anteriores, existen tres tipos de equipos para definir las deflexiones del pavimento según metodologías no destructivas, son:

- Equipos de medición de deflexiones por medio de cargas estáticas.
- Equipos de medición de deflexiones por medio de cargas vibratorias.
- Equipos de medición de deflexiones por medio de cargas de impacto.

Éstas son del mismo principio que se basan en aplicar una carga de una magnitud establecida en la superficie de la estructura del pavimento para determinar las mediciones de las deflexiones.

a. Medición de deflexión estática o de movimiento lento.

Los END empleados en el país en los últimos 26 años se han utilizado con el deflectógrafo tipo Viga Benkelman de acuerdo el procedimiento canadiense Canadian Goad Road Association (coincidente con el Instituto del Asfalto) se determinado la deflexión elástica del pavimento. El equipo que determina deformaciones del pavimento ante al someter la carga provenientes de un vehículo cargado. En las figuras 9 y 10 se muestran las ruedas duales de un eje trasero de un vehículo que transmite una carga de 8,2 toneladas y el equipo Viga Benkelman posicionado para efectuar las mediciones de deformaciones. (Carahuatay, 2015, p.31).

Figura 9. Procedimiento en campo de uso del equipo Viga Benkelman (Carril derecho)

Figura 10. Procedimiento de toma de datos (lectura deflectometría)

2.3.6 Viga Benkelman.

2.3.6.1 Generalidades.

Las deflexiones producidas en la superficie de un pavimento flexible por acción de cargas vehiculares pueden ser determinadas haciendo uso de deflectómetros; tales como el de "Viga Benkelman".

Se hace necesario resaltar, en honor al Ing. A.C. Benkelman, quién la desarrolló en 1953 como parte del programa de ensayos viales de la WASHO (WASHO Road Test); desde entonces, su uso se ha difundido ampliamente en proyectos de evaluación estructural de pavimentos flexibles, tanto por su practicidad como por la naturaleza directa y objetiva de los resultados que proporciona.

Figura 11. Viga Benkelman doble brazo

2.3.6.2 Objeto.

Ministerio de Transportes y Comunicaciones (2016) detallar el procedimiento para determinar con una Viga Benkelman la deflexión o deformación recuperable, el radio de curvatura y el cuenco de deflexiones de un pavimento flexible, producidos por una carga estática; en efecto, para tal fin se utiliza un camión, donde la carga, tamaño de llantas, espaciamiento entre ruedas duales y presión de inflado están normalizadas. (p. 962).

2.3.6.3 Finalidad y alcance.

Ministerio de Transportes y Comunicaciones (2016) la deflexión es la deformación elástica que sufre un pavimento bajo la acción de una carga rodante normalizada; mediante ella es posible evaluar el debilitamiento progresivo de la estructura debido a las solicitaciones del tránsito que lo utiliza. Como puede observarse, el campo de aplicación de estas mediciones es muy amplio, empleándose principalmente para determinar la vida útil remanente de un pavimento, evaluar estructuralmente los pavimentos con fines de mantenimiento, mejoramiento o rehabilitación, evaluar los métodos de diseño de pavimentos y control de ejecución de obras, evaluar el debilitamiento progresivo de la estructura debido a las solicitaciones del tránsito que lo utiliza, y establecer si éste presenta suficiencia sin presentar fatiga estructural creciente.

En este propósito, el método consiste en medir la deformación producida en la superficie del pavimento por la aplicación de una carga normalizada; para lo cual, el dispositivo mecánico utilizado es la Viga Benkelman de brazo simple o doble, equipo que mide los desplazamientos verticales de un punto de contacto situado entre las ruedas duales del eje de carga, para una presión de inflado en los neumáticos de 80 psi y una carga de 8,2 t en el eje posterior del camión; así mismo, la superficie de pavimento a medir mediante este método debe estar seca y libre de suciedad o material suelto que, bajo tránsito normal, será removido. (p. 962).

2.3.6.4 Características de la Viga Benkelman (equipos y materiales).

a. La viga simple de un solo brazo.

Ministerio de Transportes y Comunicaciones (2016) con su correspondiente dial (al 0,01 mm y recorrido de 12 mm) y presenta las siguientes características:

- De acuerdo al esquema de la figura 12 a y b, la viga consta esencialmente de dos partes.
- Un cuerpo de sostén que se sitúa directamente sobre el terreno mediante tres apoyos (dos delanteros fijos "A" y uno trasero regulable "B").

En relación con este último, un brazo móvil acoplado al cuerpo fijo mediante una articulación de giro o pivote "C", uno de cuyos extremos apoya sobre el terreno (punto "D") y el otro se encuentra en contacto sensible con el vástago del dial de un extensómetro de movimiento vertical (punto "E"). (DC=2,44 m CE = 0,61 m.) Adicionalmente el equipo posee un vibrador incorporado que, al ser accionado, durante la realización de los ensayos, evita que el indicador del dial se trabe y/o que cualquier interferencia exterior afecte las lecturas.

Mientras que, el extremo "D" o punta de la viga es de espesor tal que puede ser colocado entre una de las llantas dobles del eje trasero de un camión cargado. Por el peso aplicado se produce una deformación del pavimento, consecuencia de lo cual la punta baja una cierta cantidad, con respecto al nivel descargado de la superficie, el efecto de dicha acción, el brazo DE gira en torno al punto fijo "C", con respecto al cuerpo AB, determinando que el extremo "E" produzca un movimiento vertical en el vástago del extensómetro apoyado en él, generando así una lectura en el dial indicador; entonces, si se retiran luego las llantas cargadas, el punto "D" se recupera en lo que a deformación elástica se refiere y por el mismo mecanismo anterior se genera otra lectura en el dial del extensómetro. Hechas las consideraciones anteriores, la operación expuesta representa el "principio de medición" con la Viga Benkelman; lo que se hace después, son sólo cálculos en base a los datos recogidos. Así, con las dos lecturas obtenidas es posible determinar cuánto deflectó el pavimento en el lugar subyacente al punto "D" de la viga, durante el procedimiento descrito. Según se ha visto, en realidad lo que se mide es la recuperación del punto "D" al remover la carga (rebote elástico) y no la deformación al colocar ésta. Para calcular la deflexión deberá considerarse la geometría de la viga, toda vez que los valores dados por el extensómetro (EE') no están en escala real, sino que dependen de la relación de brazos existentes (Ver figura 12. a y b). (pp. 962-963).

Figura 12. Esquema y principio de operación de la Viga Benkelman Fuente: Ministerio de Transportes y Comunicaciones, 2016.

Ministerio de Transportes y Comunicaciones (2016) Viga Benkelman de doble brazo con sus correspondientes diales (al 0,01 mm y recorrido de 12 mm) y existe en las siguientes dimensiones:

- Longitud del primer brazo (brazo largo), desde el pivote al punto de prueba es
 2,44 m.
- Longitud del primer brazo (brazo largo), desde el pivote al punto de apoyo del vástago del dial es 0,61m.
- Longitud del segundo brazo (brazo corto), desde el pivote al punto de prueba es 2,19 m.
- Longitud del segundo brazo de ensayo, desde el pivote al punto de apoyo del vástago de su dial registrador = 0,5475 m.

La única diferencia entre la Viga Benkelman simple y de doble brazo radica en el segundo brazo adicional (brazo corto), cuyo punto de apoyo sobre el terreno se encuentra a 25 cm de distancia del primer brazo (brazo largo).

Un camión para ensayo con las siguientes características, el eje trasero pesará en la balanza 8,2 toneladas, igualmente distribuidos en sus ruedas duales y estará equipado con llantas de caucho y cámaras neumáticas. Las llantas deberán ser 10" x 20"; 12 lonas e infladas a 5,6 kg/cm² (80 lb/pulg²). La distancia entre los puntos medios de la banda de rodamiento de ambas llantas de cada rueda dual deber ser de 32 cm. (p. 963).

Entonces, una vez fijado los puntos a realizarse el ensayo (los segmentos de medición se sitúan en el lado exterior de un carril), se dispone colocar las llantas a usarse sobre el trazo a fin de que éste coincida con el eje vertical del centro de gravedad, en las figuras 13 "a, b, c" y figura 14, se aprecian.

	`	
n	•	
а		
	,	

(b)

Figura 13.Configuración geométrica del sistema de carga Fuente: Hoffman, Del Águila, 1985

Figura 14. Deflexión producida por dos neumáticos Fuente: Flores, 2012.

MTC (2016) en tal sentido, el punto del pavimento a ser ensayado deberá ser marcado convenientemente con una línea transversal al camino. Sobre dicha línea será localizado el punto de ensayo a una distancia prefijada del borde. Se recomienda utilizar las distancias indicadas (Ver Tabla 3). (p. 964).

Tabla 3

Ancho del carril	Distancia del punto del ensayo desde el borde del pavimento
2,70 m	0,45 m
3,00 m	0,60 m
3,30 m	0,75 m
3,60 m o más	0,90 m

Distancias indicadas de acuerdo al ancho del carril

Fuente: Ministerio de Transportes y Comunicaciones, 2016

Figura 15. Medición de lectura.

Ministerio de Transportes y Comunicaciones (2016) la rueda dual externa del camión deberá ser colocada sobre el punto seleccionado; para la correcta ubicación de la misma deberá colocarse en la parte trasera extrema del camión una guía vertical en correspondencia con el eje de carga; desplazando suavemente el camión se hace coincidir la guía vertical con la línea transversal indicada (en primer párrafo del sub título Viga doble), de modo que, simultáneamente el punto quede entre ambas llantas de la rueda dual. (p. 964).

b. Viga doble brazo.

Ministerio de Transportes y Comunicaciones (2016) se coloca la viga sobre el pavimento, detrás del camión, perpendicularmente al eje de carga; de modo que, la punta de prueba del primer brazo coincida con el punto de ensayo y la viga no roce contra las llantas de la rueda dual; luego se liberan los seguros de los brazos y se ajusta la base de la viga por medio del tornillo trasero, de manera que los dos brazos de medición queden en contacto con los diales.

En este propósito, se ajustan a los diales de modo que sus vástagos tengan un recorrido libre comprendido entre 4 y 6 mm. se giran las circunferencias de los diales hasta que las agujas queden en cero y se verifica la lectura golpeándolos suavemente con un lápiz; además, girar la circunferencia si es necesario y repetir la operación hasta obtener la posición 0 (cero). Para tal efecto, se pone en marcha el cronómetro y vibrador, se hace avanzar suave y lentamente el camión; se leen los diales cada 60 segundos. Cuando dos lecturas sucesivas de cada uno de ellos no difieran en más de 0,01 mm, se da por finalizada la recuperación, registrándose las últimas lecturas observadas (L0 y L25).

Mientras tanto, con el fin de medir la temperatura del pavimento se practica un orificio (antes de comenzar el ensayo y simultáneamente con el trazado de la línea), cuyas dimensiones serán: 4 cm de profundidad y 10 mm de diámetro, aproximadamente; emplazado sobre la línea paralela al eje del camino, que pasa por el punto de determinación de la deflexión y a 50 cm del mismo, en el sentido de avance del camión. Se llena con aceite no menos de 10 minutos antes de iniciar el ensayo, se inserta el termómetro y se lee la temperatura, retirando el mismo antes del desplazamiento del camión. (p. 965).

Ministerio de Transportes y Comunicaciones (2016) el rango de temperatura de trabajo deberá quedar dentro de los siguientes límites:

- Límite inferior: 5 °C
- Límite superior: 35 °C

No obstante, el límite superior indicado en el párrafo anterior (05), el ensayo no deberá efectuarse a temperaturas inferiores si ellas producen deformación plástica entre ambas llantas de la rueda dual. Para detectar si dicha deformación se produce se deberá proceder de la siguiente forma: Entonces, una vez registradas las lecturas L0 y L25 se hace retroceder suave y lentamente el camión hasta que la rueda dual externa quede colocada sobre el punto de ensayo, observando la marcha en la aguja del dial. Al haber alcanzado cierta posición la aguja se detiene y luego se observa un desplazamiento en sentido contrario, como si se produjera la recuperación del pavimento, ello indica que existe deformación plástica medible entre ambas llantas de la rueda dual. Esa aparente recuperación puede ser debido también, al hecho de que el radio de acción de la carga del camión afecte las patas de la viga (ver siguiente párrafo).

Por otra parte, tampoco deberá efectuarse el ensayo si, aun cuando no se detectara deformación plástica mediante el procedimiento recién indicado, se constatará que el radio de acción de la carga del camión afecta las patas de la regla, para lo cual se procederá de la siguiente forma:

Asimismo, una vez registradas las lecturas de los diales, se hace retroceder lentamente el camión observando el dial del primer brazo. Cuando se observe que el dial comienza a desplazarse acusando la deformación producida por la carga se marca sobre el pavimento la posición de la guía vertical mencionada en el párrafo (03 de procedimiento) y se detiene el retroceso del camión.

En paralelo, se mide la distancia entre la punta de prueba del primer brazo y la marca practicada sobre el pavimento, de acuerdo con lo indicado antes. Sea d esa distancia, si d es mayor de 2,40 m, la acción de la carga del camión afecta las patas de la Viga. (pp. 965-966). Por tanto, las mediciones se realizan colocando la punta de la viga entre las dos ruedas y midiendo la deflexión cuando el vehículo se aleja. Los resultados de las deflexiones se leen en un dial indicador. (Ver figura 15).

Figura 16. Colocación de la Viga Benkelman. Posición inicial y final

De este modo, tomando como punto de referencia una varilla vertical adosada a la parte trasera del camión (ver figura 17^a) se efectúa una marca en la Viga de manera tal que, basta con hacerlas coincidir para asegurarse que el extremo de la Viga coincide con el centro de gravedad del conjunto.

De igual forma se puede verificar a partir de la primera en sucesivas marcas a distancias elegidas a las cuales se desee medir deflexiones adicionales, lo cual es a 25, 50, 75 y 100 cm. Para la metodología el análisis se requiere de por lo menos recomendable tres lecturas para la obtención precisa de verificación, o si es que se desea tener una idea gráfica del tipo de curvas de deflexiones que se producen.

Figura 17. Esquematización del proceso de medición con la Viga Benkelman Fuente: Flores, 2012.

2.4 Análisis de la capacidad estructural mediante la metodología

CONREVIAL

2.4.1 Recuperación elástica.

2.4.1.1 Fase elástica.

Conza (2016) la deformación recuperable elástica y temporal corresponde a la vida útil del pavimento. Si ocurre la fase de consolidación, cada carga provoca una deformación de tipo permanente, que luego tiende a transformarse en deformación transitoria de recuperación instantánea de tipo elástico, es momentáneo, puede ser por segundos esa deformación, que luego de que la rueda pasa, ese punto deformado transitoriamente (momentáneamente) vuelve a su estado normal provocando cada rueda un movimiento vertical hacia abajo (deflexión), que se recupera después de pasar el vehículo (rebote).

En tal sentido, durante la fase elástica las deformaciones elásticas causadas por las cargas, producen esfuerzos de tensión en las capas asfálticas y de compresión en las capas granulares. La vida de un pavimento depende de esta fase, de su duración, lo cual está íntimamente ligado a las deflexiones que pueda sufrir el pavimento. (p.12).

Debido a esto, la deflexión es parte de carácter elástico, pero también intervienen esfuerzos plásticos. Los primeros desaparecen en cuanto se renueve la carga mientras que los segundos son permanentes, y su acumulación produce las distorsiones o ahuellamientos en la rasante del pavimento a través de las reiteraciones de las cargas. Por esta razón, se distingue:

- La deflexión total (dt) es la deformación producida por la carga vehicular, es decir la deflexión máxima.
- La deflexión recuperable o elástica (dr) es la recuperación de la superficie que se origina al retirar la carga vehicular.
- La deflexión permanente o residual (dp) es la diferencia entre la posición original de la superficie antes de aplicar la carga y después de retirarla.

Figura 18. Medición de deflexión recuperable Fuente: Ministerio de Transportes y Comunicaciones, 1982

 $d_t = d_r + d_p \text{....} \text{[Ecuación 1]}$

Donde:

- $d_t = Deflexión total (x 10^{-2} mm)$
- d_r = Deflexión recuperable o elástica (x 10⁻² mm)
- d_p = Deflexión permanente o residual (x 10⁻² mm)

a. Cálculo de deflexiones.

Para determinar el cálculo de las deflexiones máximas y radio de curvatura es la diferencia entre la lectura inicial 0 a 25 cm. Con la lectura final, el resultado se multiplica por un valor por la relación de brazos de la Viga Benkelman utilizada, en este caso 1:4.

 $D_n = (L_f - L_n) * 4....$ [Ecuación 2]

Donde:

- D_n : Deflexión en la medida n. (x 10⁻² mm)
- L_f: Lectura en la medida final (x 10⁻² mm)
- L_n: Lectura en la medida n. (x 10⁻² mm)

b. Corrección de las deflexiones por temperatura.

Para corregir la deflexión por efecto de la temperatura, la magnitud de las deflexiones incrementa en la carpeta, atribuida a una menor rigidez de la mezcla se corrigen respecto a una temperatura estándar de 20°C, el Estudio CONREVIAL, emplea la siguiente Fórmula:

 $D_{20 \ ^{\circ}C} = \frac{D_{t}}{((K*(t^{\circ}-20^{\circ})*h)+1)}$[Ecuación 3]

Donde:

- D_t = Deflexión recuperable, medida a la temperatura "t" °C en centésimas de (mm)
- $D_{20^{\circ}C}$ = Deflexión recuperable, medida a la temperatura estándar (20°C).
- K = Coeficiente igual a 1x 10^{-3} (1/cm x °C).
- h = Espesor de la carpeta asfáltica (cm).
- t = Temperatura de la carpeta asfáltica al ejecutarse el ensayo (°C).
- c. Corrección de las deflexiones por estacionalidad.

La capacidad de deformación de los suelos está influenciada por el grado de saturación del mismo; la presencia de agua en la subrasante influye de manera significativa, por lo que la medición de deflexiones se ejecute durante la estación de lluvias, ya que los suelos se encuentran es estado más crítica. De no ser así, se debe efectuar la corrección de las medidas a fin de tomar en cuenta dicho aspecto. Según el estudio CONREVIAL propone el uso de los siguientes factores de corrección, considerando el tipo de suelo de subrasante y la época en que se realizaron los ensayos.

Tabla 4

Tipo de suelo de la subrasante	Estación lluviosa	Estación seca
Arenoso - Permeable	1,0	1,1 – 1,3
Arcilloso – Sensible al agua	1,0	1,2-1,4

Factores de corrección por estacionalidad

Fuente: Ministerio de Transportes y Comunicaciones, 1982

- Determinación del radio de curvatura.

El radio de curvatura de la línea elástica de deflexión es una característica de principal consideración, que determina la capacidad de la deformación lineal por tracción que soportan las capas elásticas al flexionar bajo las cargas aplicadas de tránsito.

Entonces, el procedimiento de medición permite la comprobación experimental; que la línea de deflexión se aproxima a una parábola hasta una distancia algo mayor de 25 cm. del eje de carga, sufriendo una inflexión tendiendo asintóticamente hacia la horizontal, la curvatura de la parábola queda definida por su parámetro, que en la zona de máxima curvatura se confunde practicante con el radio del círculo osculador en dicho punto. El radio de curvatura queda definida por la siguiente relación:

Figura 19. Deformada del pavimento y radio de curvatura

 $R_C = 10*25^2/2*(D_0 - D_{25}).$ [Ecuación 4]

Dónde:

 R_C = Radio de Curvatura (m) D_0 = Deflexión máxima corregida por temperatura (1/100 mm) D_{25} = Deflexión máxima corregida por temperatura (1/100 mm) 10 = Coeficiente por cambio de unidades

- Deflexión característica.

La deflexión característica es un parámetro estadístico utilizado para la caracterización representativa de la magnitud de deformación de pavimentos; para su determinación es necesario contar con una base de datos de deflexiones máximas, del tramo que se requiere evaluar, "t" establecer los parámetros estadísticos de dichos datos.

(Do), del tramo que se quiere evaluar, y establecer los parámetros estadísticos de dichos datos.

Por consiguiente, la evaluación y análisis de deflexiones recuperables han señalado que las deflexiones medidas en una cierta sección del pavimento, presentan una distribución de frecuencias que se asemejan a una distribución normal.

Además, a partir de las deflexiones individuales según la ley de Gauss asumiendo que se hayan considerado la distribución normal se ha determinado la

60

deflexión promedio o media (*D*), desviación estándar (σ) y el coeficiente de variación (cv), para "n" número de determinaciones:

- Deflexión media.

 $\overline{\mathbf{D}} = \sum_{i=1}^{n} \mathrm{Di/n...}$ [Ecuación 5]

Dónde:

 \overline{D} = Deflexión media (1/100 mm)

- $D_i = Deflexión individuales (1/100 mm)$
- n = Número de determinación

- Desviación estándar.

$$\sigma = \sqrt{\sum_{i=1}^{n} (\text{Di} - \overline{D})^2 / (n-1)} \quad \text{.....[Ecuación 6]}$$

Para n > 30

Dónde:

 σ = Desviación estándar

- $D_i = Deflexión individuales (1/100 mm)$
- \overline{D} = Deflexión media (1/100 mm)
- n = Número de determinación
- Coeficiente de variación.

$C_v = (\sigma/D)^* 100$

Dónde:

C_v = Coeficiente de variación porcentual

 σ = Desviación estándar

 \overline{D} = Deflexión media (1/100 mm)

La desviación estándar (σ) incrementa cuando aumenta las deflexiones, y mayores deflexiones están asociadas a pavimentos más débiles (crítico) en general son más variables; es decir, corresponde a la distorsión de resultados que posean el mismo valor medio (*D*), de deflexión. El valor (C_v) señala mayor o menor grado de dispersión, aún para diferente valor medio. Para ejecutar el cálculo de refuerzo, debe basarse tanto en la deflexión media como en la dispersión.

En tal sentido, para diseño se utiliza la deflexión característica el valor que representa mejor a una determinada sección de pavimento; según análisis estadístico, se define como deflexión característica:

 $D_C = \overline{D} + t * \sigma$[Ecuación 8]

Dónde:

 $D_C = Deflexión característica (1/100 mm)$

 \overline{D} = Deflexión media (1/100 mm)

- t = Coeficiente que representa al porcentaje del área total con probabilidad de presentar deflexiones superiores a la deflexión característica
- σ = Desviación estándar

El valor "t" corresponderá a un porcentaje del área total con probabilidad de presentar deflexiones superiores a la deflexión características (D_c) .

Tabla 5

Valor de diseño	Dc	Área D > Dc %
50	\overline{D}	50
75	$\overline{\mathrm{D}}$ + 0,674 σ	25
85	$\overline{\mathrm{D}} + \sigma$	15
90	\overline{D} + 1,3 σ	10
95	\overline{D} + 1,645 σ	5
98	\overline{D} + 2 σ	2
99	\overline{D} + 2,33 σ	1
99,9	\overline{D} + 3 σ	0,1

Valor de "t" y probabilidad de ocurrencia de $D>D_C$

Fuente: Ministerio de Transportes y Comunicaciones, 1982

En el método empírico CONREVIAL adopta un valor de deflexión característica aquella que corresponde al 95% de probabilidad de diseño; es decir, la que es superada solo por el 5% de las determinaciones.

Para efectos de determinar de deflexión característica (D_c) que representa mejor a una sección del comportamiento de estructura homogéneo; cuyo valor es (\overline{D} + 1,645 σ). Para nivel de confianza al 90%, dicho valor es (\overline{D} + 1,282 σ). - Deflexión admisible.

El concepto de deflexión admisible se encuentra íntimamente relacionada al número de ejes Estándar equivalentes acumulados de 8,2 Tn. La fórmula ampliamente difundida por el CONREVIAL.

Por consiguiente, el valor importante es la deflexión admisible del parámetro establecido en función al tráfico de diseño, que define un límite para la deflexión característica por encima del cual no se asegura un comportamiento satisfactorio de la estructura del pavimento, durante el periodo considerado. La expresión analítica que define este parámetro (Carhuatay, 2015, p.50).

 $D_a = (1.15/N18)^{1/4}$[Ecuación 9]

Dónde:

 $D_a = Deflexión admisible (1/100 mm).$

N18 = Numero repeticiones de ejes equivalentes a 8,2 ton (millones).

Nota: "Los valores de N18 resultan del estudio de tránsito, que comprende los conteos de vehículos, el pesaje de los vehículos de mayor capacidad y hallar los factores equivalentes de carga y tasas de crecimiento anual de tránsito" (Cubas, 2017, p. 21).

- Deflexión crítica.

La metodología del estudio de rehabilitación de carreteras en el Perú, el Ministerio de Trasportes y Comunicaciones (MTC.) propone también una deflexión crítica, definida como aquella que alcanza el pavimento al término del periodo de servicio, luego de soportar el tránsito proyectado. Plantea también una relación entre el número de ejes equivalentes y la deflexión característica crítica.

 $D_{CR} = (1,90/N18)^{\Lambda^{1/5.3}}$[Ecuación 10]

Dónde:

 $D_{CR} = Deflexión crítica (1/100 mm)$

N18 = Numero repeticiones de ejes equivalentes a 8,2 ton (millones).

2.4.2 Análisis de evaluación.

Con los parámetros determinados se procede al siguiente análisis:

Tabla 6

Características del pavimento de acuerdo al tipo de deflexión y Radio de curvatura.

Tipo de deflexión	Comportamiento de la subrasante	Comportamiento del pavimento
Tipo I	Bueno	Bueno
	D < Da	Rc > 100
Tipo II	Malo	Bueno
	D > Da	Rc > 100
Tipo III	Bueno	Malo
	D < Da	Rc < 100
Tipo IV	Malo	Malo
	D > Da	Rc < 100

Fuente: Ministerio de Transportes y Comunicaciones, 1982

Figura 20. Características del pavimento de acuerdo al cuenco de deflexiones Fuente: Ministerio de Transportes y Comunicaciones, 1982

2.5 Análisis de la capacidad estructural mediante la metodología SHELL

La evaluación y análisis del método SHELL es complementario a la investigación por método CONREVIAL.

2.5.1 Presión aplicada en la superficie del pavimento flexible.

La presión de contacto entre el neumático y el pavimento será igual a la presión de aire en el neumático; entonces, se asume que la presión de contacto es uniforme en toda el área de huella de neumático.

Figura 21. Presión de contacto, presión de inflado de los neumáticos Fuente: Instituto Mexicano de Transporte, 2018

Figura 22. Presión de contacto, presión de inflado del neumático y área de contacto Fuente: Instituto Mexicano de Transporte, 2018

La presión de contacto (q) y la presión de inflado del neumático (Pi) y área de contacto (Ac).

Figura 23. Áreas circulares consideradas en las presiones de contacto con el pavimento Fuente: Instituto Mexicano de Transporte, 2018

q = Pi[E	Ecuación 1	[1]
----------	------------	-----

El área de contacto se relaciona con la carga y la presión de los neumáticos así:

a = P/q.....[Ecuación 12]

Donde:

- P = Carga aplicada (Tn)
- a = Radio de carga (cm)
- q = Presión de contacto (Kg/cm²)
- Pi = Presión de inflado del neumático (Lb/pulg²)

2.5.5.1 Huella circular o redondeada.

Si se considera un plato de carga:

 $q = P/A_C$[Ecuación 13]

Ac = P/q.....[Ecuación 14]

Donde:

Ac = Area de contacto (cm²)

El área de contacto (Ac) en función del radio de carga se tiene:

Ac = $\pi^* a^2$[Ecuación 15] π = Pi (3,141516). El radio de carga (a):

$$a = \sqrt{p/\pi * q}$$
 [Ecuación 16]

Donde:

a= Radio de carga (cm²)

Figura 24. Huella circular o redondeada Fuente: Higuera, 2011

La separación entre ejes (S):

S = 3*a, S/2	[Ecuación 17]]
--------------	---------------	---

Donde:

S= Separación entre eje (cm)
Tabla 7

		Espacio	Presión de inflado kPa																				
Tamaño nominal	Tipo de rueda	Tipo de ruedas	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750	775	800
		mínimo mm.	Peso	Peso por rueda Kg.																			
6,50-20	Simple		1500	1500	1600	1700	1800	1900	2000	2120	2210	2320	2430										
	Doble	208	2820	2820	3010	3200	3400	3600	3800	4000	4220	4410	4600										
7,00-20	Simple		1800	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800									
	Doble	222	3400	3400	3600	3800	4020	4240	4360	4540	4720	4900	5090	5280									
7,50-20	Simple		1910	1910	2050	2200	2350	2500	2650	2800	2900	3000	3100	3200	3300	3400	3500	3600					
	Doble	239	3480	3480	3750	4020	4290	4560	4830	5280	5520	5760	6000	6200	6400	6600	6800	7000					
8,25-17 B17	Simple		2100	2100	2250	2400	2540	2680	2820	2960	3100	3200	3260	3400	3480	3590	3700	3800					
	Doble	263	3800	3800	4090	4350	4600	4850	5100	5350	5600	5800	6000	6200	6450	6700	6950	7200					
8,25-20 B20	Simple		2220	2220	2370	2520	2670	2820	2970	3120	3260	3400	3520	3660	3800	3900	4010	4120					
9,00-22,5 (B22,5)	Doble	263	4000	4000	4300	4600	4900	5200	5500	5800	6100	6400	6660	6930	7200	7400	7600	7800					
9,00-20 C20	Simple		2640	2640	2810	2980	3150	3300	3450	3600	3780	3950	4120	4240	4360	4480	4610	4740	4870	5000			
10,00-22,5 C22,5	Doble	311	4610	4610	4920	5230	5540	5850	6160	6470	6780	7090	7400	7680	7960	8240	8480	8720	8960	9200			
10,00-20 D20	Simple		3000	3000	3160	3320	3480	3640	3800	3960	4120	4280	4440	4600	4770	4940	5120	5300	5440	5580	5720	5860	6000

Características de ruedas típicas de los vehículos comerciales

Tamaño		Espacio Fipo de ruedas	Presión de inflado kPa																				
nominal	Tipo de		300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700	725	750	775	800
	rueda	mínimo mm.	Peso j	eso por rueda Kg.																			
11,00-22,5 D22,5	Doble	329	5400	5400	5690	6000	6310	6620	6930	7240	7550	7860	8170	8480	8740	9010	9280	9720	9820	10090	10360	10630	10900
11,00-20 E20	Simple		3160	3160	3330	3500	3680	3860	4040	4220	4400	4580	4760	4940	5120	5300	5400	5600	5800	6000	6200	6350	6500
12,00-22,5 E22,5	Doble	354	5720	5720	6030	6340	6650	6960	7270	7580	7890	8200	8510	8820	9130	9440	9760	10140	10520	10900	11140	11370	11600
11,00-22 E22	Simple		3240	3240	3420	3600	3780	3960	4140	4320	4500	4680	4860	5040	5220	5400	5600	5800	6000	6150	6330	6510	6700
	Doble	329	5830	5830	6160	6480	6800	7130	7510	7840	8170	8500	8830	9160	9480	9800	10140	10470	10800	11200	11460	11730	12000

Fuente: Croney y Croney, 1992

Como se puede inferir, un eje sencillo de rueda doble tiene una carga de 8,2 toneladas, donde se determina el radio de carga de cada llanta para una presión de contacto de 5,6 kg/cm². Si el eje de rueda es sencillo determina el área de contacto y el radio de carga.

2.5.2 Principios básicos de la resistencia de materiales.

Resistencia de materiales establece una relación entre las fuerzas aplicadas, también llamadas cargas o acciones, y los esfuerzos y desplazamientos inducidos por ellas. Estos principios básicos son:

- Los materiales se consideran homogéneos; esto quiere decir que se hace caso omiso de las variaciones de composición que de punto a punto de los mismos tienen los materiales reales.
- Los materiales se consideran continuos; tampoco se tienen en cuenta en los análisis las discontinuidades o poros que presentan los materiales.
- Los materiales se consideran isótropos; significa que en los análisis generales no se tienen en cuenta las diferencias de propiedades en distintas direcciones del material. O sea que se supone que sus propiedades son iguales en todas las direcciones. (iso: igual, tropos: dirección).
- Principio de superposición; los efectos de un sistema de fuerzas sobre un elemento son iguales a la suma de los efectos individuales de cada una de las fuerzas. Es válido en el rango elástico lineal.

2.5.2.1 Esfuerzos.

a. Esfuerzos axiales o normales (σ).

Mayori (Son aquellos esfuerzos o fuerzas que soporta cada unidad de área cuya dirección es perpendicular a la sección transversal se conocen como esfuerzos normales. Para fuerzas de compresión el esfuerzo normal será negativo y para fuerzas de tracción el esfuerzo normal será positivo.

Entonces, se define el esfuerzo axial o normal como la relación entre la fuerza aplicada y el área de la sección sobre la cual actúa. O en otros términos como la carga que actúa por unidad de área del material.

 $\sigma = F/A$[Ecuación 18]

Donde:

 $\sigma = \text{Esfuerzo} (\text{Kg/cm}^2)$

F = Fuerza (Kg)

 $A = Area (cm^2)$

b. Esfuerzos cortantes (τ).

Son aquellos esfuerzos o fuerzas que soporta cada unidad de área cuya dirección es tangencial a la sección transversal se conocen como esfuerzos cortantes. Los esfuerzos de corte no son positivos ni negativos.

Los esfuerzos normales y cortantes aparecen por lo general simultáneamente y sus valores no son constantes en una sección, sino que varían de un punto a otro.

- *Esfuerzos producidos en la estructura del pavimento flexible.*

La estructura del pavimento flexible al ser sometida a una solicitud, normalmente a una carga ortogonal a su superficie produce esfuerzos, los cuales se distribuyen en las capas de mejor calidad, donde los esfuerzos son superiores y estos se distribuyen de mayor a menor según la profundidad hacia los niveles inferiores de la estructura del pavimento. Produce un estado de tensiones y deformaciones. Las deformaciones producen desplazamientos en sentido vertical en magnitudes muy pequeñas del orden de centésima o milésima de milímetros (deflexión).

Figura 25. Cargas distribuidas del pavimento flexible

Figura 26. Distribución de presiones de carga de rueda sobre la estructura del pavimento Fuente: Sotil, 2016

La llanta no sólo genera esfuerzos verticales sino también esfuerzos horizontales. En una estructura típica de pavimento (carpeta asfáltica, base, sub basa granular) los esfuerzos horizontales se disipan a través de la carpeta asfáltica, pasando de un valor positivo en una superficie a uno negativo en su fibra inferior. Los esfuerzos así generados producen fisuras que se reflejarán en la superficie.

En efecto, la carpeta asfáltica está sometida solamente a esfuerzos de compresión, mientras los esfuerzos de tracción son absorbidos por la base y sub base. (Minaya, Ordóñez, 2006, p.9).

Figura 27. Distribución de esfuerzos en un pavimento flexible Fuente: Carahuatay, 2015

Figura 28. Diagrama de distribución de los esfuerzos con la profundidad Fuente: Higuera, 2011

2.5.2.2 Deformaciones.

Cualquier miembro o material que soporta carga se deforma por la influencia de la carga aplicada, las deformaciones que presentan los cuerpos dependen de los tipos de carga a los que están sometidos.

También llamada deformación unitaria, a la relación de la deformación causada por la carga y la longitud original del material.

Figura 29. Deformación unitaria Fuente: Sotil, 2016

 $\varepsilon = \Delta L / L$[Ecuación 19]

Donde:

- ε = Deformación unitaria
- $\Delta L = Variación de longitud$
- L = Longitud original

La deformación por tensión (ε_t) en los planos inferior y superior de la capa asfáltica, relacionada con: agrietamiento por fatiga ante carga repetida del tránsito, con propagación ascendente o descendente; agrietamiento térmico con propagación descendente se caracteriza por:

- El esfuerzo y deformación vertical por compresión dentro de la capa asfáltica, relacionadas con la deformación permanente acumulada de la carpeta.
- El esfuerzo y deformación vertical por compresión dentro de las capas granulares.
- Estar relacionadas con la deformación permanente acumulada de dichas capas.
- El esfuerzo y deformación vertical por compresión en el plano superior de la subrasante, asociada con la deformación permanente acumulada.

A estas variables críticas, se suma la deflexión superficial, la cual se ha asociado directamente con el agrietamiento del concreto asfáltico por fatiga. (Beltrán, 2012, p.22).

Figura 30. Deformación del pavimento producido por esfuerzos de tensión y compresión Fuente: Sotil, 2016

Figura 31. Deformación del pavimento ante la carga – variables críticas

En la figura 31 se muestra la reciprocidad real entre las deformaciones y esfuerzos producidos en el pavimento, mostrándonos que cada material tiene un propio de módulo de elasticidad.

Figura 32. Rigidez para materiales elásticos Fuente: Sotil, 2016

Figura 33. Curva Esfuerzo vs. Deformación de un material en compresión Fuente: Sotil, 2016

 $K = \sigma \, / \, \epsilon \text{.....[Ecuación 20]}$

Donde:

K= Rigidez

- $\sigma = \text{Esfuerzo} (\text{Kg/cm}^2)$
- $\epsilon = Deformación$

2.5.3 Teoría elástica de pavimentos flexibles.

Quiñonez (2015) la teoría de la elasticidad es la más utilizada para determinar resultados en las diferentes capas, que conforman el pavimento flexible debido a las cargas de los ejes vehiculares, en combinación con los efectos ambientales.

Los resultados están representados por los esfuerzos críticos, deformaciones o deflexiones como respuesta. Para la evaluación de pavimentos se utilizan los conceptos básicos de la teoría de la elasticidad.

Entonces, la propiedad de la elasticidad se da si el esfuerzo depende exclusivamente de la deformación, esto significa, que la historia de la deformación es inmaterial y solo el valor actual de este es necesario para determinar el valor actual del esfuerzo se dice entonces, que el material tiene un comportamiento elástico. La expresión, que relaciona los esfuerzos y deformaciones para el caso particular de elasticidad isotrópica y lineal es la denominada ley de Hooke. Para predecir el comportamiento elástico de un material isotrópico basta definir dos constantes las cuales son el módulo de elasticidad E y el coeficiente de poisson v respectivamente.

Si un elemento cilíndrico de una cierta longitud L y diámetro D, esto nos da un área A, el cual no está siendo sometido por una carga estática según la figura 34.

Figura 34. Elemento cilíndrico y Carga Estática Fuente: Quiñonez, 2015

En líneas generales, cuando es sometido por una carga en el sentido axial, lo primero, que se determinará será la tensión en las cargas y se aplicará la fórmula de fuerza partido por área, generando como resultado la presión de contacto o tensión, debido esto hay una respuesta del elemento cilíndrico, lo que al acortarse y ensancharse sufre cambio de longitud, un delta (Δ L) y debido al ensanchamiento hay un incremento de diámetro, es decir una diferencia de diámetro un delta (Δ D), ver figura 35. (pp. 30-31).

Figura 35. Carga, tensión y deformación unitaria Fuente: Quiñonez, 2015

Al tener la magnitud de Δ_L , se puede determinar la deformación unitaria que es cuanto se deformó con respecto a la longitud original del elemento, indicando porcentualmente ya que la deformación unitaria es de una unidad adimensional.

 $\varepsilon_{\rm L} = \Delta_L / \text{L}$[Ecuación 21]

Donde:

 ε_L = Deformación unitaria longitudinal

 Δ_L = Variación de longitud

L = Longitud inicial

Al comprimirse se ensanchó, es decir incrementó su diámetro, por ende hay una diferencia de diámetros, por lo que hay, una nueva deformación unitaria, que es diametral cuanto se deformó con respecto al original.

 $\varepsilon_{\rm D} = \Delta_D / {\rm D}....$ [Ecuación 22]

Donde:

 $\varepsilon_{\rm D}$ = Deformación unitaria diametral

 Δ_D = Variación de diámetro

D = Diámetro inicial

Al conocer la tensión y la deformación unitaria se puede determinar el módulo de elasticidad, o la constante de resorte o ley de Hooke, que es la tensión dividida entre la deformación unitaria.

 $E = \sigma/\varepsilon_L$[Ecuación 23]

Donde:

 $E = M \acute{o} du lo de elasticidad (N/mm²)$

 $\sigma = \text{Esfuerzo} (\text{Kg/cm}^2)$

 \mathcal{E}_L = Deformación unitaria longitudinal

Quiñonez (2015) esto se da cuando estamos hablando de una dimensión, pero el módulo es tridimensional entonces es esos casos es aplicable la ley de Hooke la cual se trabaja en las tres direcciones y se expresa en forma matricial en términos del módulo de Young y el coeficiente de poisson, ver figura 36.

$$\begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{xy} \\ \varepsilon_{xz} \\ \varepsilon_{yz} \end{pmatrix} = \begin{pmatrix} \frac{1}{E} & -\frac{\nu}{E} & -\frac{\nu}{E} & & & \\ -\frac{\nu}{E} & \frac{1}{E} & -\frac{\nu}{E} & & & \\ -\frac{\nu}{E} & -\frac{\nu}{E} & \frac{1}{E} & & & \\ & & \frac{(1+\nu)}{E} & 0 & 0 \\ & & & 0 & \frac{(1+\nu)}{E} & 0 \\ & & & 0 & 0 & \frac{(1+\nu)}{E} \end{pmatrix} \begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{xy} \\ \sigma_{xz} \\ \sigma_{yz} \end{pmatrix}$$

Figura 36. Ecuación matricial de la ley de Hooke

También las ecuaciones de Lamé- Hooke para un sólido elástico Lineal e isotrópico pueden ser deducidas del Teorema de Rivlin - Ericksen, que pueden escribirse de la siguiente forma, ver las ecuaciones:

$$\varepsilon_{x} * E = \sigma_{x} - v * \sigma_{y} - v * \sigma_{z}$$

$$\varepsilon_{y} * E = \sigma_{y} - v * \sigma_{x} - v * \sigma_{z}$$

$$\varepsilon_{z} * E = \sigma_{z} - v * \sigma_{y} - v * \sigma_{x}$$

$$2 * G * \gamma_{xy} = \tau_{xy}$$

$$2 * G * \gamma_{xz} = \tau_{xz}$$

$$2 * G * \gamma_{yz} = \tau_{yz}$$

Figura 37. Ecuación deducida de ley de Hooke

En la siguiente figura 38. Se aprecian los esfuerzos y deformaciones en un espacio tridimensional, de una masa de suelo.

Figura 38. Ecuaciones deducidas de ley de Hooke (esfuerzos y deformaciones en un espacio tridimensional)

Donde entra el coeficiente poisson y las tensiones verticales, tangenciales y radiales en los otros ejes, además del módulo de elasticidad E, está el módulo de corte G.

Cuando un material se ensancha al mismo tiempo se acorta, pero esta acción, que se realiza va a depender del coeficiente de poisson es específico para cada material y es la razón entre la deformación unitaria diametral y longitudinal.

 $V = \varepsilon_D / \varepsilon_L$[Ecuación 24]

Donde:

- v =Coeficiente de poisson
- $\varepsilon_{\rm D}$ = Deformación unitaria diametral
- ε_{L} = Deformación unitaria longitudinal

Para los materiales que se utilizan en la construcción de pavimentos tenemos rangos y materiales típicos de la relación del coeficiente de poisson, lo que se muestra en la siguiente tabla 8, se pueden utilizar estos si no se dispone de otros datos, también se puede calcular un valor, empleando una relación de deformación volumetría y deformación axial, que se haya obtenido en una prueba triaxial. Para los cálculos de esta investigación se tomara el valor de u =0.35, que es un valor aceptable para suelos granulares. (pp. 33-34).

Tabla 8

Material	Rango	Valor típico
Concreto hidráulico	0,10-0,20	0,15
Concreto asfáltico	0,15-0,45	0,35
Suelo granular	0,10-0,20	0,15
Suelo fino	0,15 - 0,35	0,25
Concreto pobre	0,10 - 0.20	0,15
Base y subbase granular	0,30 - 0,40	0,40
Suelo de subrasante	0,30 - 0,50	0,40

Valores típicos de coeficiente de poisson de materiales que forman un pavimento

Fuente: Chávez, Echeverría e Iriondo, 2018

2.5.3.1 Metodología para determinar el módulo elástico.

Las investigaciones para determinar una correlación de Modulo Elástico (E) frente el ensayo de CBR son carente. En 1955, Terzaghi realizó estudio de los parámetros que representa el ensayo de carga de placa usando una placa circular de 760 mm de diámetro y 16 mm de espesor, buscando una relación empírica entre el CBR y el módulo elástico. Posterior a Terzaghi, los demás investigadores plantearon sus correlaciones del E, el ensayo CBR y el ensayo de Carga de Placa en función del tipo de suelo, entre ellos se tiene los siguientes: Heukelom and Klomp (1962), NAASRA (1950); Powell, Potter, Mayhew y Nunn (1984); Putri, Hameswara y Mannan (2012) y Hajiannia, Dorobati, Kasaeian y Baghbadorani (2016). (Gerónimo, 2020, pp.49-50).

Figura 39. Correlaciones entre el módulo elástico y el ensayo de CBR. Fuente: International Society For Soil Mechanics And Geotechnical Engineering, 2016

NAASRA (1950), plantea la relación en dos condiciones:

$$E = 16,2 * CBR^{0,7} * (MPa), CBR < 5....[Ecuación 25]$$

 $E = 22,4 * CBR^{0,5} * (MPa), CBR > 5....[Ecuación 26]$

La relación empírica propuesta por Heukelom and Klomp (1962) para suelos de granos finos y no expansivos con un CBR menor al 100%, la cual también es utilizada por el AASHTO 1993, es la siguiente:

E = 1500 * CBR * (Psi).....[Ecuación 27]

Powell, Potter, Mayhew y Nunn (1984), plantea la siguiente correlación:

 $E = 17.6 * CBR^{0.64} * (MPa)....[Ecuación 28]$

Putri, Hameswara y Mannan (2012) plantea relaciones en función al módulo de poisson:

$$v = 0;$$
 E = 863,82 * CBR (kPa).....[Ecuación 29]

v = 0,3; E = 840,53 * CBR (kPa).....[Ecuación 30]

v = 0,4; E = 741 * CBR (kPa).....[Ecuación 31]

Hajiannia, Dorobati, Kasaeian y Baghbadorani (2016), utilizando la metodología FEM (Finite Element Model), ensayos de PLT (Plate Load Test) y CBR (California Bearing Ratio) definieron la dicha correlación:

 $E_{\text{CBR}} = \frac{1,46(1-\nu^{0.983})\sigma_{\text{p.}} r_{\text{CBR}}}{\mu^{1,031}} \dots \text{[Ecuación 32]}$

Donde:

- E = Módulo elástico de CBR
- v = Módulo de poisson.
- $\sigma_{\rm p}$ = Esfuerzo aplicado.
- μ = Penetración de pisón.

2.5.3.2 Módulo elástico de una MAC Marshall.

El ensayo Marshall, llamado "Prueba Brasilera" somete a la briqueta de mezcla asfáltica compactada a una carga a tracción indirecta. Frotch (1957), citado por los autores Yoder y Witzarck, encontró las ecuaciones de distribución de esfuerzos a lo largo del diámetro de una briqueta cilíndrica cargada verticalmente de canto, para los casos de medición del ensanchamiento horizontal (ensayo TSR o de tracción indirecta), como el caso del achatamiento vertical (más parecido al caso de carga Marshall). (Sánchez, 2012, p. 1).

Figura 40. Distribución de esfuerzos en prueba de compresión diametral Fuente: Sánchez, 2012

Los resultados de elaboración y ensayo de especímenes del grupo Marshall se resume en las tablas 9, 10 y 11, para energías de compactación de 50, 75 y 100 golpes/cara.

Tabla 9

Resultado para grupo Marshall 50 g/c

р	C	Р	$\boldsymbol{\delta}_{\mathrm{V}}$	t	E *	E*corr	0
Гb	Gmb	(lb)	(in)	(in)	(psi)	(psi)	a
4,5	2,34	3257	0,11	2,5	200 000	100 000	6,457642
5	2,408	4061	0,13	2,42	240 000	120 000	7,127618
5,5	2,41	3157	0,15	2,44	190 000	95 000	8,476705
6	2,4	2362	0,24	2,42	120 000	60 000	11,41463

Fuente: Sánchez, 2012

Tabla 10

Resultado para grupo Marshall 75 g/c

	C	Р	$\boldsymbol{\delta}_{\mathrm{V}}$	t	E *	E*corr		
Рь	Gmb	(lb)	(in)	(in)	(psi)	(psi)	a	
4,5	2,429	3279	0,1	2,38	280 000	140 000	7,807431	
5	2,418	2870	0,13	2,45	230 000	115 000	9,850291	
5,5	2,428	2978	0,14	2,41	190 000	95 000	8,280038	
6	2,414	2287	0,21	2,4	120 000	60 000	10,21193	

Fuente: Sánchez, 2012

Tabla 11

Resultado	para	grupo	Marshall	100	g/c
-----------	------	-------	----------	-----	-----

D	C	Р	$\boldsymbol{\delta}_{\mathrm{V}}$	t	E *	E*corr		
Рb	$\mathbf{F}_{\mathbf{b}}$ $\mathbf{G}_{\mathbf{mb}}$		(in)	(in)	(psi)	(psi)	a	
4,5	2,431	3309	0,13	2,4	280 000	140 000	10,19449	
5	2,432	3159	0,13	2,41	210 000	105 000	8,005346	
5,5	2,427	2407	0,14	2,41	190 000	95 000	10,28578	
6	2,401	2009	0,2	2,44	120 000	60 000	11,27387	

Fuente: Sánchez, 2012

Para diferentes porcentajes de contenido óptimo de cemento asfáltico (P_b), los valores se determinarán interpolando acorde a los rangos de las tablas 9, 10 y 11. Utilizando la ecuación 28.

$$Y = Y_0 + \frac{Y_1 - Y_0}{X_1 - X_0} (X - X_0)$$
 Ecuación 33]

2.5.4 Teoría elástica lineal de Boussinesq (1885)

En 1885 Boussinesq desarrolló una serie de ecuaciones, para una sola capa con la cual se puede determinar las tensiones, deformaciones unitarias y los desplazamientos de un sistema de pavimentos para una capa con sus propiedades de carga. Para ello se asumió ciertas condiciones para calcular los esfuerzos, deformaciones y deflexiones en un espacio semi-infinito, homogéneo, isotrópico, lineal elástico, con un módulo "E" y coeficiente de poisson "V", cargado por una carga puntual "P", perpendicular a la superficie. En esas condiciones funciona la fórmula de Boussinesq.

El francés Boussinesq, consiguió resolver matemáticamente el problema de calcular las tensiones generadas por una carga puntual actuando normalmente sobre un semi-espacio.

Donde, se basa en la aplicación de una carga puntual concentrada sobre un semi–espacio infinito en planta y profundidad, siendo sus características:

- El semi-espacio es continuo, homogéneo, isótropo y elástico lineal.

- Los esfuerzos, deformaciones y desplazamientos bajo un área uniformemente cargada se determinan mediante integración.
- Los neumáticos de los vehículos se pueden modelar como áreas circulares.
- El modelo de Boussinesq es aplicable en pavimento cuya estructura y subrasante tengan módulos de elasticidad muy similares. Es un caso muy poco representativo.
- Una aplicación más realista es la evaluación de módulo movilizado de la subrasante a partir de medidas de deflexión (desplazamiento vertical) bajo una carga de configuración conocida (intensidad, forma). (Vásquez, 2015, p. 3).

Semiespacio infinitamente grande: Significa que la masa de suelo está limitada en uno de sus lados mientras que se extiende infinitamente en las otras direcciones. Para el caso de suelos, la superficie horizontal es el lado limitante.

Material homogéneo: Un material se considera homogéneo cuando presenta las mismas propiedades a lo largo de todos sus ejes o direcciones. Cuando se trabaja con suelos, esta hipótesis se refiere solamente a que el módulo de elasticidad, módulo cortante y el coeficiente de poisson deben ser constantes; lo que implica la no existencia de lugares duros y lugares blandos que afecten considerablemente la distribución de esfuerzos. Sin embargo, es posible admitir la variación del peso unitario de un lugar a otro.

Debido a que el suelo no es un material completamente homogéneo, el tomar en cuenta esta hipótesis introduce siempre algún porcentaje de error.

Material isotrópico: Significa que tanto el módulo de elasticidad, módulo cortante y el coeficiente de poisson son los mismos en todas las direcciones. La mayoría de los suelos cumplen con este criterio, pero existen materiales, tales como los lechos rocosos sedimentarios que no lo cumplen.

Material con propiedades lineales elásticas de esfuerzo, deformación: Significa que a cada incremento de esfuerzos está asociado un incremento correspondiente de deformación. Esta hipótesis implica que la curva esfuerzodeformación es una línea recta que no ha alcanzado el punto de fluencia.

El modelo de Boussinesq es aplicable en pavimentos cuya estructura y subrasante tengan módulos de elasticidad muy similares. Es un caso muy poco representativo.

Al respecto, una aplicación más realista es la evaluación del módulo movilizado de la subrasante a partir de medidas de deflexión (desplazamiento vertical) bajo una carga de configuración conocida (intensidad, forma).

Figura 41. Tensiones generadas por una carga puntual sobre semiespacio 01 Fuente: Sotil, 2016

2.5.4.1 Problema de Boussinesq.

Figura 42. Tensiones generadas por una carga puntual sobre semiespacio 02 Fuente: Sotil, 2016

$$\sigma_{\rm z} = \frac{3P}{2\pi z^2} * \cos^5 \Theta \dots \text{[Ecuación 34]}$$

$$cos\theta = \frac{z}{\sqrt{r^2 + z^2}}$$
....[Ecuación 35]

$$r = \sqrt{x^2 + y^2}$$
....[Ecuación 36]

$$\sigma_{\rm Z} = \frac{3P}{2\pi z^2 (1 + (\frac{r}{z})^2)^{5/2}}$$
....[Ecuación 37]

La más usada en la práctica y puede ser escrita en términos de un factor de influencia Ip:

$$I_{\rm P} = \frac{3}{2\pi} * \left[\frac{1}{1 + (\frac{r}{z})^2}\right]^{\frac{5}{2}}.$$
 [Ecuación 38]

$$\sigma_{\rm z} = \frac{P}{z^2} * I_{\rm P} \qquad \text{[Ecuación 39]}$$

Valores de Ip en términos de r y z están tabulados. Exactamente debajo del punto de carga Q,

2.5.4.2 Bulbo de Presiones de Boussinesq.

Figura 43. Distribución de esfuerzos en el terreno debido a una carga puntual Fuente: Sotil, 2016

$$\sigma_{\rm Z} = \frac{3}{2\pi} * \frac{1}{[1 + (\frac{r}{z})^2]^{\frac{5}{2}}} * \frac{P}{z^2} \qquad \text{[Ecuación 40]}$$

Donde:

- $\sigma_{\rm z}$ = Esfuerzo vertical (kg/cm²)
- P = Carga (kg)
- z = Profundidad (m)
- r = Distancia radial desde la carga (m)

Tabla 12

r/z	Iz	r/z	Iz	r/z	Iz
0,000	0,4775	0,360	0,3521	1,800	0,0129
0,020	0,4770	0,380	0,3408	2,000	0,0085
0,040	0,4756	0,400	0,3295	2,200	0,0058
0,060	0,4732	0,450	0,3011	2,400	0,0040
0,080	0,4699	0,500	0,2733	2,600	0,0028
0,100	0,4657	0,550	0,2466	2,800	0,0021
0,120	0,4607	0,600	0,2214	3,000	0,0015
0,140	0,4549	0,650	0,1978	3,200	0,0011
0,160	0,4482	0,700	0,1762	3,400	0,00085
0,180	0,4409	0,750	0,1565	3,600	0,00066
0,200	0,4329	0,800	0,1386	3,800	0,00051
0,220	0,4243	0,850	0,1226	4,000	0,00040
0,240	0,4151	0,900	0,1083	4,200	0,00032
0,260	0,4054	0,950	0,0956	4,400	0,00026
0,280	0,3954	1,000	0,0844	4,600	0,00021
0,300	0,3849	1,200	0,0513	4,800	0,00017
0,320	0,3742	1,400	0,0317	5,000	0,00014
0,340	0,3632	1,600	0,0200		

Variación de Iz para varios valores de r/z

Fuente: Sotil, 2016

2.5.4.3 Ecuaciones de Boussineq, sistema Mono capa carga puntual.

En la siguiente figura N° 45 presentamos la notación en coordenadas cilíndricas utilizadas por la ecuación de Bousinessq.

Figura 44. Esquema del modelo de Bousinessq

Figura 45. Notación en coordenadas cilíndricas de Bousinessq

Solución de un sistema en coordenadas cilíndricas (r, θ , z) con origen puntual. El material se caracteriza por el módulo elástico (E) y la relación de poisson (v). Se puede obtener:

- $\sigma_{\rm z}$ = Esfuerzo vertical
- $\sigma_{\rm r}$ = Esfuerzo radial
- $\sigma_{\rm t}$ = Esfuerzo tangencial
- $\tau_{\rm zr}$ = Esfuerzo cortante
- U_z = Desplazamiento o deflexión vertical

Figura 46. Carga puntual esfuerzo vertical - Notación en coordenadas cilíndrica de Bousinessq

- Solución de un sistema en coordenadas cilíndricas (r,θ,z) con origen en el centro de un área circular superficial de radio (a).
- El área cargada aplica una presión uniforme (q), es decir, no tiene rigidez propia.
- El material se caracteriza por el módulo elástico (E) y la relación de poisson (v).

Figura 47. Carga circular uniforme esfuerzo vertical - Notación en coordenadas cilíndrica de Bousinessq

Si nos fijamos ahora un sistema de coordenada radial como el de la figura anterior, hay un punto de aplicación de la carga en un eje central. Si pensamos en una partícula dentro de este semi-espacio semi-infinito, esa partícula estaría a una distancia "R", del eje de aplicación de la carga y a una profundidad Z.

Entonces, podemos decir que dicha partícula presenta en ese punto esfuerzos verticales, esfuerzos radiales y tangenciales, en ese sistema de coordenadas se encuentras las ecuaciones de Bousinessq. A continuación, presentamos las ecuaciones de Bousinessq, que se obtuvo en el sistema de coordenadas cilíndricas.

2.5.4.4 Expresiones de cálculo de esfuerzos en el eje de simetría.

a. Esfuerzo vertical σ_z .

$$\sigma_{\rm z} = q \left[1 - \frac{z^3}{(a^2 + z^2)^{3/2}} \right]$$
....[Ecuación 41]

Donde:

- $\sigma_{\rm z}$ = Esfuerzo vertical (Kg/cm²)
- q = Presión de contacto (Kg/cm²)
- a = Radio de carga (cm)
- z = Profundidad (cm)

b. Esfuerzo radial σ_r .

Donde:

 $\sigma_{\rm r}$ = Esfuerzo radial (Kg/cm²)

 $\mu = Relación de poisson$

- q = Presión de contacto (Kg/cm²)
- a = Radio de carga (cm)
- z = Profundidad (cm)
- c. Esfuerzo tangencial σ_t .

Cizallamiento o esfuerzo cortante máximo τ_{max} :

$$\tau_{max} = \frac{\sigma_z - \sigma_r}{2}$$
 [Ecuación 44]

Sustituyendo, ecuaciones 41 y 42 se tiene:

Donde:

- $\sigma_{\rm t}$ = Esfuerzo tangencial (Kg/cm²)
- $\tau_{max} = \text{Cizallamiento máximo (Kg/cm}^2)$
- μ = Relación de poisson
- q = Presión de contacto (Kg/cm²)
- a = Radio de carga (cm)

z = Profundidad (cm)

2.5.4.5 Determinación de deformaciones en el eje de simetría.

a. Deformación vertical \mathcal{E}_{z} .

Donde:

- ε_z = Deformación vertical (Kg/cm²)
- $E = M \acute{o} du lo de elasticidad del material (N/m²)$
- μ =Relación de poisson
- q = Presión de contacto (Kg/cm²)
- a = Radio de carga (cm)
- z = Profundidad (cm)
- b. Deformación radial \mathcal{E}_r .

Donde:

 ε_r = Deformación radial
$E = M \acute{o} du lo de elasticidad del material (N/m²)$

- $\mu = Relación de poisson$
- q = Presión de contacto (Kg/cm²)
- a = Radio de carga (cm)
- z = Profundidad (cm)
- c. Deformación tangencial \mathcal{E}_t .

$$\varepsilon_{t} = \frac{1}{E} [\sigma_{t} - \mu(\sigma_{z} - \sigma_{r})].$$
 [Ecuación 48]

Donde:

 ε_t = Deformación radial

- $\sigma_{\rm r}$ = Esfuerzo radial a una profundidad z (Kg/cm²)
- $\sigma_{\rm t}$ = Esfuerzo tangencial a una profundidad z (Kg/cm²)
- σ_z = Esfuerzo vertical a una profundidad z (Kg/cm²)
- $E = M \acute{o} du lo de elasticidad del material (N/m²)$
- $\mu = Relación de poisson$

2.5.4.6 Determinación de la deflexión Δ_z en el eje de carga a una profundidad

Z.

a. Deflexión vertical \mathcal{E}_z .

$$\Delta_{z} = \frac{(1+\mu)qa}{E} \left[\frac{a}{(a^{2}+z^{2})^{1/2}} + \frac{1-2\mu}{a} \left[(a^{2}+z^{2})^{1/2} - z \right] \right] \dots [\text{Ecuación 49}]$$

$$\Delta_{z} = \frac{q}{E} \left[\left[2(1-\mu^{2})(a^{2}+z^{2})^{1/2} \right] - \frac{(1+\mu)z^{2}}{(a^{2}+z^{2})^{1/2}} + \left[(\mu+2\mu^{2}1)z \right] \right] \dots \dots [\text{Ecuación 49b}]$$

Cuando $\mu = 0,5$:

$$\Delta_z = \frac{3 q a^2}{2 E (a^2 + z^2)^{1/2}}.$$
 [Ecuación 50]

Sobre la superficie, z=0, la deflexión Δ_0 es:

$$\Delta_0 = \frac{2qa(1-\mu^2)}{E}$$
....[Ecuación 51]

Donde:

- Δ_z = Deflexión a una profundidad z (mm)
- Δ_0 = Deflexión en una superficie (mm)
- $E = M \acute{o} du lo de elasticidad del material (N/m²)$
- μ = Relación de poisson
- q = Presión de contacto (Kg/cm²)
- a = Radio de carga (cm)
- z = Profundidad (cm)

- Las tensiones (normales y de corte) son independientes del módulo E.
- Las tensiones verticales y tensiones principales también son independientes
- del coeficiente de poisson.
- Las deflexiones son inversamente proporcionales a la profundidad.
- Las tensiones y deflexiones unitarias son inversamente proporcionales al
- cuadrado de la profundidad.
- También se aprecia, que hay una importante diferencia entre la variación de
- tensiones y deformaciones unitarias por un lado y los desplazamientos por otro.

Los desplazamientos o deflexiones varían inversamente con la profundidad, pero las otras respuestas varían con la profundidad al cuadrado (Quiñonez, 2015, p.41).

2.5.5 Teoría de Donald M. Burmister (1943, 1945).

2.5.5.1 Teoría de dos capas.

En 1943, Boussinesq desarrolló y presentó el primer análisis de la teoría de capas elásticas planteada, basándose en los conceptos en la Universidad de Columbia. Esta hipótesis se podía superponer a las estructuras de pavimento, teniendo en cuenta las propiedades de los materiales usados en cada estrato que conformaba el suelo a fin de determinar los estados de esfuerzos a cualquier profundidad. El procedimiento de este modelo es complejo ya que su solución comprende transformadas de Fourier, de Hankel y series de Bessel, que comprende:

- Cada capa es homogénea y elástica lineal con un espesor finito pequeño.
- No es considerado el peso propio.
- Una presión circular es aplicada en la superficie del pavimento.

Existe compatibilidad de esfuerzos y deformaciones entre dos capas adyacentes.
(Balarezo, 2017, p.12).

Busrmister propuso en 1943 la teoría multicapa para analizar el estado de esfuerzo en una estructura de pavimento. Primero propone la solución basada en dos capas y después ésta fue extendida a "n" capas.

La primera solución para un sistema generalizado multicapa elástica fue presentada por Donald M. Burmister en la Universidad de Columbia, destacando las siguientes características:

- Soluciones específicas para sistemas de dos y tres capas.
- Sistemas elásticos de N capas.
- Cargas uniformes, aplicadas de forma normal sobre un área circular.
- El material de las capas es homogéneo, isotrópico y linealmente elástico.
- La primera capa tiene un espesor finito.
- Las capas son infinitas en dirección horizontal.
- Las capas se caracterizan por el módulo de elasticidad y la relación de poisson.
- Se desarrolla fricción en la interface de las capas.

Figura 48. Modelo estructural de dos capas

- P = Carga aplicada (Tn)
- q = Presión de contacto aplicada (Kg/cm²)
- a = Radio de carga (cm)
- $E_i = M \acute{o} du lo de elasticidad de la capa i (N/m²)$
- $\mu_i = Relación \ de \ poisson \ de \ la \ capa \ i$
- h = Espesor de capa superior (cm)
- a. Determinación de la deflexión por medio de las fórmulas.

Según las expresiones de Palmer y Barber

Desplazamiento o deflexión en la superficie del pavimento, ΔT :

Desplazamiento o deflexión en la primera capa, Δp :

$$\Delta p = \frac{1.5qa}{E_1} \left[1 - \frac{a}{\sqrt{a^2 + h^2 (\frac{E_1}{E_2})^{2/3}}} \right]$$
 [Ecuación 53]

Desplazamiento o deflexión en la superficie de la subrasante, Δs :

$$\Delta s = \frac{1.5qa^2}{E_2 \sqrt{a^2 + h^2 (\frac{E_1}{E_2})^{2/3}}}.$$
 [Ecuación 54]

Según las expresiones de Odemark

Desplazamiento o deflexión en la superficie del pavimento, ΔT :

Desplazamiento o deflexión en la primera capa, Δp :

 $\Delta p = \Delta T - \Delta s$[Ecuación 56]

Desplazamiento o deflexión en la superficie de la subrasante, Δs :

- ΔT = Desplazamiento o deflexión total en la superficie del pavimento (mm)
- Δp = Desplazamiento o deflexión total en la primera capa (mm)
- Δs = Desplazamiento o deflexión total en la superficie de la subrasante (mm)

q = Presión contacto (Kg/cm²)

- a = Radio de carga (cm)
- E_1 = Módulo de elasticidad de la capa superior (N/m²)

 $E_2 = M \acute{o} du lo de elasticidad de la capa inferior (subrasante) (N/m²)$

H = Espesor de la capa superior (cm)

Esfuerzo vertical de compresión sobre la subrasante, σ_z :

$$\sigma_{\rm z}$$
: = q $\left[1 - \frac{1}{(1 + (\frac{a}{he})^2)^{3/2}}\right]$[Ecuación 58]

Donde:

- σ_z = Esfuerzo vertical sobre la subrasante (Kg/cm²)
- q = Presión contacto (Kg/cm²)
- a = Radio de carga (cm)
- he = Espesor equivalente (cm)

El espesor equivalente (he) se determina mediante la siguiente expresión:

he = 0,9h[
$$\frac{E_1}{E_2} \left(\frac{1-\mu_2^2}{1-\mu_1^2}\right)$$
]^{1/3}....[Ecuación 59]

Si $\mu_1 = \mu_2 = 0.5$ entonces el espesor equivalente es:

he: =
$$0.9h(\frac{E_1}{E_2})^{1/3}$$
[Ecuación 60]

Donde:

He = Espesor equivalente (cm)

- H = Espesor de la capa superior (cm)
- $E_1 = M \acute{o} du lo de elasticidad de la capa superior (N/m²)$
- E_2 = Módulo de elasticidad de la capa inferior (subrasante) (N/m²)
- μ_1 = Relación de poisson de la capa superior
- μ_2 = Relación de poisson de la capa inferior (subrasante)

2.5.5.2 Teoría de tres capas.

Los sistemas estructurales de las tres capas son las más utilizadas para el análisis de estructuras de pavimentos y generalmente están constituidos por una capa superior, que puede ser una capa bituminosa; una capa intermedia, que puede estar constituida por materiales granulares, y una tercera capa que corresponde a la subrasante. Las hipótesis para el estudio de los sistemas tricapas son:

- Las capas son homogéneas, isotrópicas y linealmente elásticas.

- Todas las capas tienen espesores definidos, a excepción de la capa inferior (subrasante), que se considera de espesor infinito.
- Todas las capas son infinitas en sentido horizontal.
- Las capas están caracterizadas por el módulo de elasticidad y la relación de poisson, de acuerdo con los materiales constitutivos de ellas.
- En la interface se desarrolla completa fricción entre las capas.

Figura 49. Modelo estructural tricapa Fuente: Yoder y Witczak, 1975

El modelo tricapa está constituido de los siguientes parámetros:

- a = Radio de carga (cm)
- E_i = Módulo de elasticidad de la capa i (N/mm²)
- $E_n = M \acute{o} du lo de elasticidad de la capa n (N/mm²)$
- μ = Relación de poisson
- n = Número de capas de la estructura de pavimento
- he = Espesor equivalente del modelo estructural (cm)

a. Cálculo de parámetros utilizando fórmulas.

Las expresiones para determinar los parámetros de esfuerzos del modelo tricapas son las mismas que se presentan en el capítulo de modelos multicapa, y para calcular los parámetros de deformación se utilizan las expresiones descritas anteriormente.

2.5.5.3 Teoría multicapa.

Las estructuras de pavimentos están conformadas por un conjunto de capas, como se muestra en la figura 50.

Para el análisis del estado de esfuerzos y deformaciones de un sistema elástico multicapa se parte de las siguientes hipótesis:

- Las propiedades del cualquier punto de una capa son las mismas.
- Cada capa tiene definido su espesor, excepto la última (subrasante), cuyo espesor se considera infinito.
- Todas las capas se consideran infinitas en sentido longitudinal.
- Todas las capas son homogéneas, isotrópicas y linealmente elásticas.
- En la interfase de las capas se desarrolla fricción entre ellas.
- Cada capa está definida por: el espesor, el módulo de elasticidad y la relación de poisson.

En tal sentido, si consideramos un elemento de la estructura del pavimento se tiene que, actúan los siguientes esfuerzos: teóricamente para un punto dado del sistema estructural existen 9 esfuerzos. De estos esfuerzos, tres son las componentes normales (σ_z , σ_r , σ_t) actuantes perpendicularmente en cada una de las caras de un elemento y 6 son esfuerzos cortantes (τ_{rt} , τ_{tr} , τ_{rz} , τ_{zr} , τ_{tz} , τ_{zt}) actuantes paralelamente en cada una de las caras del elemento. En condiciones de equilibrio los esfuerzos cortantes en cada una de las caras sobre el elemento son iguales.

"El sistema está conformado de n-1 capas horizontales de espesor h_i , módulo de elasticidad E_i , módulo de poisson μ_i y se aplica una carga de presión uniforme q sobre un área circular de radio a, ver la figura 50" (Balerazo, 2017, p. 14).

Figura 50. Modelo de un sistema elástico multicapa Fuente: Yoder y Witczak, 1975

$$\tau_{rz} = \tau_{zr}; \ \tau_{rt} = \tau_{tr}; \ \tau_{tz} = \tau_{zt}$$
....[Ecuación 61]

Dado el estado triaxial de esfuerzos de un elemento las deformaciones pueden ser calculadas por las siguientes ecuaciones:

a. Deformación vertical.

$$\boldsymbol{\varepsilon}_{\mathbf{z}} = \frac{1}{E} [\sigma_{\mathbf{z}} - \mu(\sigma_{\mathbf{r}} + \sigma_{\mathbf{t}})]$$
[Ecuación 62]

b. Deformación radial.

$$\varepsilon_{\mathbf{r}} = \frac{1}{E} [\sigma_{\mathbf{r}} - \mu(\sigma_{\mathbf{t}} + \sigma_{\mathbf{z}})]$$
[Ecuación 63]

c. Deformación tangencial.

$$\boldsymbol{\varepsilon}_{t} = \frac{1}{E} [\sigma_{t} - \mu(\sigma_{r} + \sigma_{z})]....$$
[Ecuación 64]

Figura 51. Esquema general del sistema de pavimento multicapa Fuente: Higuera, 2016

d. Cálculo de parámetros utilizando fórmulas de Palmer y Barber.

La carga sobre el pavimento se esquematiza por una presión uniforme q, aplicada sobre un área circular de radio a la estructura está compuesta por n-1 capas horizontales de espesor h_i , módulo de elasticidad E_i y la relación de poisson μ_i .

Cálculo de la deflexión en la superficie de la estructura, Δ_0 :

La deflexión en la superficie de la estructura está dada por Δ_0 y su expresión de cálculo es la siguiente:

- $\hat{E} = M \hat{o} du lo equivalente del modelo estructural (N/m²)$
- $E_i = M \acute{o} du lo de elasticidad de la capa i (N/m²)$
- n = Número de capas de la estructura de pavimento
- $h_i = Espesor de la capa i (cm)$
- a = Radio del plato de carga (cm)

El módulo equivalente \hat{E} se determina por la siguiente expresión:

e. Fórmula de Odemark para calcular la deflexión en la capa de subrasante Δ_s .

La carga sobre la calzada se esquematiza por una presión uniforme q sobre un área circular de radio a. la estructura está compuesta por n-1capas horizontales de espesor h_i , módulo de elasticidad E_i y la relación de poisson μ_i , todos iguales a μ , que se toma de la base de un masivo semiinfinito de características mecánicas E_n y μ_i . Cálculo de la deflexión en la subrasante, Δ_s :

El desplazamiento a nivel del suelo de subrasante y en el eje de la carga está dado por:

$$\Delta_{\rm s} = \frac{P}{2 \, {\rm E}_n \, {\rm h}_e \sqrt{1 + \frac{a}{{\rm h}_e}}} \dots [Ecuación 67]$$

Donde:

P = Carga aplicada (Tn)

- a = Radio de carga (cm)
- $E_i = M \acute{o} du lo \ de \ elasticidad \ de \ la \ capa \ i \ (N/m^2)$
- $E_n = M \acute{o} du lo de elasticidad de la capa n (N/m²)$
- μ = Relación de poisson
- n = Número de capas de la estructura de pavimento
- he = Espesor equivalente del modelo estructural (cm)

Valor de P y he se determina mediante las siguientes expresiones:

 $P = qa^2\pi....$ [Ecuación 68]

$$h_e = 0.8 \sum_{i=1}^{n-1} h_i \sqrt[3]{\frac{E_i}{E_n}}$$
.....[Ecuación 69]

- q = Presión de contacto (Kg/cm²)
- $h_i = Espesor de la capa i (cm)$
- a = Radio del plato de carga (cm)
- f. Fórmula de Odemark y Kirk para calcular el esfuerzo vertical de compresión sobre la subrasante, σ_z .

En un sistema de multicapa elástico de n capas, de espesor h_i , de módulo de elasticidad E_i , sometido a una carga circular, el esfuerzo vertical σ_z sobre la capa de subrasante está dada por la siguiente expresión:

$$\sigma_{\rm Z} = q \left[1 - \frac{1}{\left[1 + \left(\frac{a}{h_{\ell}}\right)^2 \right]^{3/2}} \right] \dots \left[\text{Ecuación 70} \right]$$

Donde:

- a = Radio de carga (cm)
- E_i = Módulo de elasticidad de la capa i (N/m²)
- $E_n = M \acute{o} du lo de elasticidad de la capa n (N/m²)$
- n = Número de capas de la estructura de pavimento
- he = Espesor equivalente del modelo estructural (cm)

2.5.6 Programas de análisis multicapas.

Cuando los sistemas tienen más de tres capas, los cálculos manuales para determinar esfuerzos, deformaciones y deflexiones se vuelven complicados y para facilitarlos se utilizan las herramientas computaciones (software), para lo cual concurren programas:

- BISAR 3.0, desarrollado por la Shell Research, creado 1970 y publicado en 1978, 1998. (10 capas).
- KENLAYER O KENPAVE, desarrollado por el Dr. Yang H. Huang, profesor emérito de la Universidad de Kentucky 2003. (19 capas).
- WINDEPAV 2.6, desarrollado por la Universidad del cauca (Colombia) para el Ministerio de Transporte de Colombia durante la investigación de pavimento de Colombia (INPACO) en 1994. (06 capas).
- 3D MOVE ANALYSIS, desarrollado por el Dr. R. Siddharthan et 1993, 1998.
- PITRA PAVE 1.0.0, desarrollado por unidad de materiales y pavimentos (UMP), programa de infraestructura del transporte (PITRA), laboratorio nacional de materiales y modelos estructurales (Lanamme UCR), Universidad de Costa Rica (UCR) en 2015. (40 capas).

2.5.6.1 Principios principales del programa BISAR 3.0.

El programa Bisar 3.0 permite determinar los esfuerzos, deformaciones y deflexiones de forma elástica, sistema multicapa que se define por la siguiente configuración y comportamiento del material que comprende:

- El sistema de capas horizontales de espesor uniforme que descansan sobre una base semi infinita o medio espacio.

- Las capas se extienden infinitamente en direcciones horizontales.
- El material de cada capa es homogéneo e isotrópico.
- Los materiales son elásticos y tienen una relación lineal esfuerzo deformación.

Por tanto, el sistema se carga en la parte superior de la estructura mediante una o más cargas circulares, con un esfuerzo uniforme, distribución sobre el área cargada. El programa ofrece la posibilidad de calcular el efecto de esfuerzos verticales y horizontales (fuerzas de corte en la superficie) e incluye una opción de cuenta para el efecto de deslizamiento (parcial) entre las capas, a través de un cumplimiento de resorte de corte en la interfaz.

Los cálculos de Bisar 3.0 requieren la siguiente entrada:

- El número de capas.
- Los módulos de Young de las capas.
- Las relaciones de poisson de las capas.
- El grosor de las capas (excepto la capa base semi infinita).
- La conformidad del resorte de corte de interfaz en cada interfaz.
- El número de cargas.
- Las coordinadas de la posición del centro de las cargas.

Una de las siguientes combinaciones para indicar el componente vertical normal de la carga.

- Esfuerzo y carga
- Carga y radio
- Esfuerzo radio
- El componente tangencial horizontal de la carga y la dirección de esta carga de corte. (opcional).
- Las coordenadas de las posiciones para las cuales se requiere salida.

Figura 52. Esquema general del sistema de pavimento multicapa (tridimensional) Fuente: Higuera, 2016

- a = Radio del área cargada (m)
- S = Separación entre ejes de carga (m)
- q = Esfuerzo o presión de contacto (kPa)
- P = Carga vertical (Kn)
- E = Módulo de elasticidad (MPa)
- h = Espesor de capas (m)

Para ingresar datos al programa BISAR 3.0 requiere de las unidades de sistema internacional, tal cual se indica.

La salida de datos, es decir en la obtención de resultados, nos reporta los valores de esfuerzos, deformaciones y deflexiones en siguientes unidades:

 $\sigma = Mpa$

 $\varepsilon = \mu strain$

 $\Delta = \mu m$

2.5.7 Comportamiento estructural del pavimento flexible por método SHELL2.5.7.1 Esfuerzos, deformaciones y deflexiones de servicio y admisibles.

Los esfuerzos, deformaciones y las deflexiones se pueden determinar en cualquier punto del modelo estructural, pero en el caso diseño de las estructuras de pavimentos interesan algunos puntos en especial para poder realizar los estudios y análisis correspondientes para controlar la fatiga, el ahuellamiento o deformación y la deflexión de los pavimentos.

Por consiguiente, los esfuerzos, deformaciones y deflexiones actuantes en una estructura de pavimentos se denominan de servicio o críticos y deben ser menores a los esfuerzos, deformaciones y deflexiones admisibles, para, asegurar que el modelo estructural se comporte adecuadamente ante las solicitaciones de carga durante la vida de servicio del pavimento. De acuerdo con lo anterior se deben cumplir las siguientes relaciones: $\sigma_{Servicio} < \sigma_{Admisible}$

 $\epsilon_{Servicio} < \epsilon_{Admisible}$

 $\Delta_{Servicio} < \Delta_{Admisible}$

Entonces, a través de los estados tensionales del modelo estructural del pavimento flexible se pretende conocer el comportamiento de los esfuerzos y deformaciones (radiales, tangenciales y verticales) en función de la profundidad o a lo largo del espesor de cada capa del pavimento.

2.5.7.2 Parámetros de verificación de valores admisibles.

Higuera (2012) los parámetros nos permitirán conocer el comportamiento estructural y la capacidad de los estados tensionales (esfuerzos, deformaciones y deflexiones) admisibles, se calculan de acuerdo las leyes de comportamiento, aplicando principios de ingenieros Dormon – Kerhoven, la CBR de Bélgica y Yang Huang.

Esfuerzo vertical admisible de compresión sobre la subrasante.

Según principio de Dormon – Kerhoven.

 $\sigma_{\text{z adm}} = \frac{0,007 \, x \, E_{\text{s}}}{1+0.7 \, x \log N}.$ [Ecuación 71]

 $\sigma_{z adm}$ = Esfuerzo vertical admisible de compresión sobre la subrasante kg/cm2

- N = Tránsito de diseño expresado en ejes equivalentes de 8,2 Tn en el carril de diseño durante el periodo de diseño
- E_1 = Módulo resiliente de la subrasante kg/cm².

Según principio de la CRR de Bélgica.

 $\sigma_{z adm} = \frac{0.9607 \text{ x } \text{CBR}^{1,2}}{\text{N}^{0,229}}$[Ecuación 72]

Donde:

 $\sigma_{z adm}$ = Esfuerzo vertical admisible de compresión sobre la subrasante kg/cm²

N = Tránsito de diseño expresado en ejes equivalentes de 8,2 Tn en el carril de diseño durante el periodo de diseño.

CBR = Capacidad de soporte de la subrasante %. (p. 10).

Higuera (2012) deformación radial admisible de tracción en la superficie de la capa rodadura.

Criterio o ley de fatiga de la Shell.

$$\varepsilon_{\rm radm} = (0.856 * V_{\rm b} + 1.08) * E_1^{-0.36} * (\frac{N}{K})^{-0.20}$$
..... [Ecuación 73]

 $\mathcal{E}_{r adm}$ = Deformación radial admisible de tracción en la base de la capa asfáltica.

 V_{b} = Porcentaje del volumen de asfalto de la mezcla asfáltica

 E_1 = Módulo dinámico de la capa asfáltica

- N = Tránsito de diseño expresado en ejes equivalentes de 8,2 Tn en el carril de diseño durante el periodo de diseño
- K = Coeficiente de Calage. (p. 9).

Higuera (2016) criterio CRR de Bélgica

 $\varepsilon_{\rm r adm} = 1,60 \ x \ 10^{-3} \ * \ N^{-0,21}$[Ecuación 74]

\$\mathcal{E}_{r adm}\$ = Deformación radial admisible de tracción en la base de la capa asfáltica
N = Tránsito de diseño expresado en ejes equivalentes de 8,2 Tn en el carril de diseño durante el periodo de diseño. (p. 91).

Higuera (2012) deformación vertical admisible por compresión sobre la subrasante. Criterio o ley de deformación de la Shell.

 $\varepsilon_{z adm} = 1.95 \text{ x} 10^{-2} \text{ * } \text{N}^{-0.25}$[Ecuación 75]

 $\mathcal{E}_{z adm}$ = Deformación vertical admisible por compresión sobre la subrasante.

 N = Tránsito de diseño expresado en ejes equivalentes de 8,2 Tn en el carril de diseño durante el periodo de diseño.

Determinación de la deflexión admisible de la estructura del pavimento Criterio o ley de deflexión de Huang.

$$\Delta_{z adm} = 26,32202 * N^{-0,2438}$$
.....[Ecuación 76]

Donde:

- $\Delta_{z adm}$ = Deformación admisible de la estructura
- N = Tránsito de diseño expresado en ejes equivalentes de 8,2 Tn en el carril de diseño durante el periodo de diseño.
- a. Gráficos de puntos de estudio.

En virtud de los resultados, se procura conocer el comportamiento de los esfuerzos, las deformaciones y las deflexiones, en función de la profundidad el estudio se efectúa mediante la aplicación del programa Bisar 3.0 de la SHELL, dicho programa permite determinar los estados tensionales del pavimento flexible en cualquier punto de estudio, bajo la carga actuante y las propiedades físicas de las capas de base, sub base y subrasante, la propiedades físicas y químicas de la carpeta asfáltica.

Los diez (10) puntos que se opta preferiblemente en sistema para ejecutar el estudio de análisis, las cuales están situados en 0, 15, 30, 60, 90, 120, 150, 180, 210 y 240 cm desde el eje de simetría del sistema, la variación de los estados tensionales en la zona del cuenco de deflexión que origina la carga vehicular. Se aprecia en la figura 53. (pp. 10-11).

Figura 53. Puntos de análisis de los estados tensionales Fuente: Higuera, 2012

Higuera (2012) en el análisis de la deflexión se aprecia el comportamiento en diferentes capas del paquete estructural en función de la profundidad (Véase figura 54).

Figura 54. Deflexión de los puntos de estudio Fuente: Higuera, 2012

b. Cuenco de deflexiones.

El cuenco de deflexiones se caracteriza por representar un valor máximo en el eje de simetría, donde se somete la carga y a medida que se aleja la deflexión decrece, hasta llegar a un punto que tiende a cero.

En líneas generales, la magnitud de la deflexión en estructuras de pavimento flexibles es muy pequeña, normalmente es menor a 1,5 milímetros y para diseño, la deflexión máxima es menor de 1 milímetro. (pp. 13-14).

Figura~55. Cuencos de deflexión a una profundidad Z de 0, 10, 30, 60 y 100 cm Fuente: Higuera, 2012

CAPÍTULO III

MÉTODO

3.1 Tipo de la investigación

Corresponde al tipo de investigación descriptiva – aplicativa.

3.2 Diseño de investigación

En el presente estudio de investigación se utiliza el diseño de investigación cuantitativa.

3.3 Población y muestra

3.3.1 Población.

La Red vial regional de Moquegua MO-108 (Tramo 23+000 al 25+000 Km.) Otora – San Juan San June, de una longitud de 2 Km.

3.3.2 Tamaño de la muestra.

La muestra elegida para la evaluación del comportamiento estructural del pavimento flexible de la red vial regional de Moquegua MO-108, entre los sectores de Otora - San Juan San June, se opta de 81 puntos y/o segmentos en carril crítico,

puntos a cada 25 m. tramo de 2 Km de longitud, con un ancho de superficie de rodadura (calzada) de 6 metros (cada carril de 3 m.).

3.4 Descripción de instrumentos para la recolección de datos

La acumulación de los datos se adquirirá por medio de mediciones de las deflexiones con la Viga Benkelman en toda la longitud del tramo del carril crítico de la vía en estudio.

3.4.1 Instrumentos.

Viga Benkelman: de doble brazo con sus respectivos diales, debidamente calibradas.

Figura 56. Viga Benkelman.

Para tal efecto, se hizo uso de un camión volquete (C2) con llantas de caucho y cámaras neumáticas 10" x 20"; 12 lonas y una distancia entre los puntos medios de la banda de rodamiento de ambas llantas de cada rueda dual debe ser de 32 cm. e infladas a 5,6 kg/cm² (80 libras por pulg²), el eje trasero pesado en la balanza 8,2 Tn, igualmente distribuidos en sus ruedas duales.

Figura 57. Medida de presión de aire al neumático.

Medidor de presión de aire llantas

Figura 58. Medidor de presión

Termómetro: Para medición de temperatura °C

Figura 59. Termómetro convencional

Balanza:

Figura 60. Carguío al camión con material grava 1/2"

Figura 61. Camión C2 con carga en pesaje

Figura 62. Resultados de la balanza

Cinta métrica:

Figura 63. Cinta métrica de 5 m

Combo, clavo de acero, alicate, tiza y aceite:

Figura 64. Herramientas varios

Cuña:

Figura 65. Cuña para camión

Figura 66. Lectora de coordenadas UTM en GPS.

3.4.2 Ubicación del proyecto (zona de estudio).

- País : Perú
- Región : Moquegua
- Provincia : Mariscal Nieto
- Distrito : Torata
- Sectores : Otora San Juan San June

GPS:

Figura 67. Inventario vial – Emp.PE-36 A (Torata – Otora – Jaguay – Omate – Coalaque – Puquina – L.D. Moquegua MO 108)

Fuente: Ministerio de Transportes y Comunicaciones, 2017

Tabla 13

Ubicación geográfica

Progresiva	Coord. geográficas		Coordenadas UTM			Elevación
(km)	Longitud	Latitud	Este (m)	Norte (m)	Zona	(msnm)
23+000	70°52'33,8"	16°59'33,4"	300268,96	8120306,48	19K	3003
24+000	70°52'01,4"	16°59'35,4"	301228,00	8120254,15	19K	3062
25+000	70°51'51,9"	16°59'12,5"	301502,00	8120960,00	19K	3110

Figura 68. Ubicación del tramo II Km. 15+000 al Km 35+000. (Otora – San Juan Sanjone) Fuente: Google Earth, 2019

Figura 69. Ubicación del tramo Km. 23+000 al Km 25+000 Fuente: Google Earth, 2019

Figura 70. Plano de Planta tramo Km. 23+000 al Km 24+000 Fuente: Gobierno Regional Moquegua, 2013

Figura 71. Plano de Planta tramo Km. 24+000 al Km 25+000 Fuente: Gobierno Regional Moquegua, 2013

3.4.3 Clasificación de la vía.

Según su jerarquía: Sistema Nacional (PE-36 A).

De acuerdo a su demanda: categoría de la vía (segunda clase).

Según condiciones orográficas: Tipo III y tipo IV.

3.4.4 Características geométricas de la vía a evaluar.

Tabla 14

Descripción geométrica de la vía

N° de Calzada	N° de Carriles	Ancho de carriles	Berm	as laterales	Corona
		(m)	N°	Ancho (m)	Ancho (m)
1	2	3	2	0,50	7

Fuente: Gobierno Regional Moquegua, 2013

Figura 72. Sección transversal típica a media ladera vía de dos carriles

3.4.5 Tipo de suelo de fundación.

Gobierno Regional Moquegua (2013) las características del terreno de fundación, con la información integrada, tanto de campo como de laboratorio se han establecido los horizontes de los materiales que se encuentran en la vía proyectada, se define los tipos de suelo y los estratos. (p. 33).

Tabla 15

Resumen de la totalidad de los suelos

				, granu	lares (%)		Mate	riales f	ïnos (%	(0)
_	A	-1			А	-2					
Sector	A-1-	A-1-	A-3	A-2-	A-2-	A-2-	A-2-	A-4	A-5	A-6	A-7
	а	b		4	5	6	7				
Toda la	31	25	0	18	0	8	4	8	0	4	2
vía	5	6			30				14		

Fuente: Gobierno Regional Moquegua, 2013

Figura 73. Tipo de suelo en toda la vía, tramo km 0+000 - km 103+000 Fuente: Gobierno Regional Moquegua, 2013

En líneas generales, tal cual se aprecia en toda la carretera existe preponderancia de los suelos granulares A-1-a y A-1-b; es así mismo, continúa en importancia los granulares limosos tipo A-2. Los materiales finos representan el 14% de la totalidad.

3.4.6 Parámetros de diseño de pavimento empleados, periodo 10 y 20 años.

Tabla 16

Parámetros d	de	diseño	de	pavimento
--------------	----	--------	----	-----------

Parámetros o	le diseño			10 años	20 años
Número de ejes	s equivalentes			1,480x10 ⁵	3,622x10 ⁵
Módulo resilier	nte, Mr (psi)			12 533	12 533
Nivel de confia	nza, R (%)			90%	90%
Factor de confi	abilidad, Zr			-1,242	-1,242
Desviación está	ándar, So	0,45	0,45		
Servicialibidad	inicial	4,0	4,0		
Serviciabilidad final				2,0	2,0
ΔPSI				2,0	2,0
Número estruct	tural requerido		SN	2,06	2,38
Carpeta Asfáltica	m1 = 1,00	2,0	D1(pulg.)	2,0	2,0
Base	m2 = 1,25	6,0	D2(pulg.)	6,0	6,0
Sub-base	m3 = 1,15	6,0	D3(pulg.)	6,0	6,0
Espesor total de	el pavimento		(pulg.)	14,0	14,0
Número estruct	tural propuesto		SN	2,675	2,675

Fuente: Gobierno Regional Moquegua, 2013

Periodo de diseño: 10 y 20 años

Estructura del pavimento:

Carpeta asfáltica	: 2"
Base granular	: 6"
Sub base granular	: 6"
Subrasante	: (variable)

3.4.6.1 Año de construcción y puesta en servicio.

Año de construcción	: Sub base granular 2017
	: Base granular 2018
	: Colocado de carpeta asfáltica 2018
	: Puesta a servicio noviembre del 2018

3.4.7 Diseño de mezcla asfáltica en caliente

Tabla 17

Resumen de resultados de mezcla asfáltica MAC-2

Resultado de la mezcla asfáltica en caliente							
Mezcla asfáltica MAC-2							
Ensayos	Diseño	Especificaciones	Observ.				
Granulometría	MAC-2	MAC-2	Cumple				
Peso unitario	2,125		Cumple				
Promedio de granulometrías	MAC-2	MAC-2	Cumple				
Estabilidad	1 530,00	Min. 815 kg	Cumple				
Contenido óptimo de cemento asfáltico	5,40%	Min. 5.2%	Cumple				
Porcentaje de vacíos	3,40%	3-5%	Cumple				
V.M.A	15,3	Min. 14%	Cumple				
Flujo	15,1	8-16	Cumple				
Relación polvo/asfalto	1,2	0,5-1,3	Cumple				
Factor de rigidez	3,432	2 350 - 4 000	Cumple				
Estabilidad retenida	82,00%	Min. 70%	Cumple				
Resistencia retenida		Min. 70%	Cumple				

Fuente: Gobierno Regional Moquegua, 2013

3.4.8 Procedimiento para medir las deflexiones.

Para realizar las medidas de las deflexiones en la rasante del pavimento flexible se usó la Viga Benkelman de doble brazo, que es un dispositivo mecánico que se desempeña de manera independiente cada brazo, en donde, cada uno de sus extremos se sostiene en el pavimento deformado ante la aplicación de una carga vehicular, el otro está en contacto sensible con un deformímetro de precisión, con dial de lecturas graduado en centésimas de milímetro. La relación de dicho instrumento es de 1/4. La carga aplicada en ensayos es de 8,2 Tn, es decir, el eje trasero simple se pesó en la balanza, igualmente distribuidos en sus ruedas duales de un camión. Los neumáticos se inflaron a una presión de 5,6 kg/cm² (80 psi).

Es así mismo, el punto del pavimento a ser ensayado se trazó convenientemente con una línea transversal al camino. Sobre dicha línea se localizó el punto de ensayo a una distancia prefijada del borde. La carretera de estudio tiene un ancho de superficie de rodadura de 6 m y cada carril de 3 m, (Véase tabla 3). Por lo que, la distancia del punto de ensayo desde el borde del pavimento es de 0,60 m.

Sin duda, la rueda dual externa del camión deberá ser colocada sobre el punto seleccionado; para la correcta ubicación de la misma deberá colocarse en la parte trasera extrema del camión una guía vertical en correspondencia con el eje de carga. Desplazando suavemente el camión, se hace coincidir la guía vertical con la línea transversal, de modo que simultáneamente el punto quede entre ambas llantas de la rueda dual.

Figura 74. Ubicación del centro de gravedad del eje simple posterior

Antes de realizar el ensayo de deflectometría, en el punto de ensayo se practica un orificio simultáneamente con el trazado de la línea, cuyas dimensiones han sido de 4 cm de profundidad y 10 mm de diámetro, emplazado sobre la línea paralela al eje de la carretera, en el sentido de avance del camión, dicho orificio se llenó con aceite por un tiempo de 10 minutos, en el cual se insertó la aguja del termómetro digital y se procedió a leer la temperatura del pavimento, luego se retiró antes de desplazamiento del camión.

La temperatura leída estuvo dentro el rango de temperatura de trabajo, como límites se tiene: Límite inferior es de 5°C y límite superior es de 35°C. Se colocó la viga sobre el pavimento, detrás del camión, perpendicularmente al eje de carga, de modo que la punta de prueba del primer brazo coincida con el punto de ensayo y la viga no roce contra las llantas de la rueda dual.

Figura 75. Alineamiento de Viga Benkelman con el centro de los neumáticos

Figura 76. Medición de lectura.

Se giraron las circunferencias de los diales hasta que las agujas queden en cero y se verificó la lectura golpeándolos suavemente con un lapicero. Se repitieron dichas operaciones hasta obtener la posición 0 (cero).

Figura 77. La aguja en cero del dial

Debido a esto, establecida la lectura inicial se pone en marcha suave y lentamente el camión, a una velocidad de 3 km/h, aproximadamente, procediéndose a tomar las lecturas conforme la varilla vertical vaya coincidiendo con la marcas de guía, en L0 y L25 en cada segmento de una distancia de 25 metros, y en los 4 puntos críticos se tomó la lectura a L0, L25, L50, L75, L100 y medida que el camión se va alejando se tomó la lectura hasta que el indicador del dial ya no tenga movimiento, registro que corresponde al punto de referencia con deflexión cero. Cuando dos lecturas sucesivas de cada uno de ellos no difieran en más de 0,01 mm se da por finalizada la recuperación.

Figura 78. D_0 = Deflexión máxima.

Figura 79. D_{25} = Deflexión a 25 cm.

3.4.8.1 Formato de inspección.

Tabla 18

Formato de toma de datos In situ.

Muestra	Prog	resiva	T° del Pavimento		Deflexión (x 10º²mm)				
N°	Km.	Carril		D 0	D25	D50	D75	D100	
-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-

Tabla 19

Unidades de muestra

Ancho de calzada (m)	Ancho de carril (m)	Espesor de capa rodadura (cm)	Punto de ensayo desde el borde (cm)	Relación de Brazos	T° de Pavimento (°C)	T° de Ambiente (°C)
6	3	5	60	1:4	23,4 20,7	19,6 21,5

Tabla 20

Lecturas según distancia

Lectura (x 10 ⁻² mm)							
LO	L25	L50	L75	L100			
Tahla 21							
Deflexiones							

Deflexiones (x 10 ⁻² mm)							
D0	D25	D50	D75	D100			

Tabla 22

Deflexiones corregidas por temperatura

	Radio curvatura (m)				
D0	D25	D50	D75	D100	Rc

Tabla 23

Evaluación de los parámetros

Progres. Km.	Deflexión (x 10 ⁻² mm)	Radio de curvatura (m)	Deflexión admisible (x 10 ⁻² mm)	Radio de curvatura mín. (m)	Tipo de subrasante	Tipo de pavimento
-----------------	--------------------------------------	------------------------------	---	-----------------------------------	-----------------------	----------------------

CAPÍTULO IV

ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

4.1 Presentación de resultados

4.1.1 Resultados del ensayo de las deflexiones por método CONREVIAL.

4.1.1.1 Ensayo de deflexión con Viga Benkelman.

La medida de deflexión del pavimento flexible empleando la viga Benkelman se ha realizado según la normatividad ASTM D 4695 y el MTC E 1002, con los resultados se ha evaluado la subrasante y pavimento; por consiguiente, se elaboraron deflectograma y radio curvatura, ver tabla 24. Cabe resaltar, que el estudio se realizó en el carril derecho de la calzada, es decir en carril más crítico, ya que el material de fundación y la subrasante es de relleno. Por otro lado, el ensayo de medida de la deflexión a cero años corresponde a carril derecho de la vía, ya que en el estudio de investigación se planteó predecir la vida útil de pavimento. Es por la razón, se ha evaluado en dicho carril.

Tabla 24

Muestra	Muestra Progresiva		Def (x 10	lexión ⁻² mm)	Radio Curvatura	
N°	Km.	Carril	D0	D25	(m)	
1	23+000	Der.	43	25	177	
2	23+025	Der.	48	28	159	
3	23+050	Der.	61	36	126	
4	23+075	Der.	68	40	112	
5	23+100	Der.	67	39	114	
6	23+125	Der.	47	28	162	
7	23+150	Der.	64	38	120	
8	23+175	Der.	47	28	162	
9	23+200	Der.	52	31	147	
10	23+225	Der.	60	35	128	
11	23+250	Der.	72	42	106	
12	23+275	Der.	78	46	98	
13	23+300	Der.	76	45	99	
14	23+325	Der.	53	31	144	
15	23+350	Der.	64	38	120	
16	23+375	Der.	61	36	124	
17	23+400	Der.	54	32	139	
18	23+425	Der.	54	32	139	
19	23+450	Der.	64	38	120	
20	23+475	Der.	72	43	106	
21	23+500	Der.	52	31	147	
22	23+525	Der.	72	42	106	
23	23+550	Der.	37	22	209	
24	23+575	Der.	68	40	112	
25	23+600	Der.	57	34	135	
26	23+625	Der.	40	24	187	
27	23+650	Der.	44	26	171	
28	23+675	Der.	59	35	130	
29	23+700	Der.	68	40	112	
30	23+725	Der.	72	42	106	
31	23+750	Der.	80	47	95	

Resumen de resultados de ensayo de deflexión.

32	23+775	Der.	67	39	114
33	23+800	Der.	58	34	132
34	23+825	Der.	49	29	156
35	23+850	Der.	52	31	147
36	23+875	Der.	59	35	130
37	23+900	Der.	51	30	150
38	23+925	Der.	65	38	119
39	23+950	Der.	72	43	106
40	23+975	Der.	69	41	110
41	24+000	Der.	33	20	234

Resumen de resultados de ensayo de deflexión,

Muestra	Progresiva		Deflexión (x 10 ⁻² mm)		Radio curvatura
\mathbf{N}°	Km.	Carril	D0	D25	(m)
42	24+025	Der.	68	40	112
43	24+050	Der.	64	37	119
44	24+075	Der.	74	43	103
45	24+100	Der.	85	50	90
46	24+125	Der.	40	24	191
47	24+150	Der.	45	27	167
48	24+175	Der.	51	30	151
49	24+200	Der.	56	33	138
50	24+225	Der.	64	37	119
51	24+250	Der.	51	30	151
52	24+275	Der.	47	28	162
53	24+300	Der.	69	41	111
54	24+325	Der.	48	28	160
55	24+350	Der.	68	40	112
56	24+375	Der.	64	37	119
57	24+400	Der.	52	31	148
58	24+425	Der.	33	19	231
59	24+450	Der.	40	24	191
60	24+475	Der.	88	53	89
61	24+500	Der.	65	39	117
62	24+525	Der.	73	43	105

6	53	24+550	Der.	56	33	135
6	54	24+575	Der.	56	33	138
6	55	24+600	Der.	41	24	185
6	6	24+625	Der.	46	27	167
6	57	24+650	Der.	77	45	100
6	58	24+675	Der.	74	44	103
6	59	24+700	Der.	56	33	138
7	0	24+725	Der.	64	37	119
7	1	24+750	Der.	52	31	148
7	2	24+775	Der.	56	33	138
7	'3	24+800	Der.	52	31	148
7	'4	24+825	Der.	40	24	191
7	5	24+850	Der.	96	57	79
7	6	24+875	Der.	32	19	238
7	1	24+900	Der.	41	24	185
7	'8	24+925	Der.	50	29	154
7	'9	24+950	Der.	52	31	148
8	80	24+975	Der.	41	24	182
8	81	25+000	Der.	45	27	167

4.1.1.2 Cálculo de los parámetros.

Por corrección de temperatura: Empleamos la ecuación (3)

$$D_{20 \,^{\circ}C} = \frac{D_t}{((K * (t^{\circ} - 20^{\circ}) * h) + 1)}$$

Deflexión media: Empleamos la ecuación (5)

$$\overline{D} = \sum_{i=1}^{n} \text{Di/n}$$

 $\overline{D} = 57,95 \text{ x } 10^{-2} \text{ mm}$

Desviación estándar: Empleamos la ecuación (6)

$$\sigma = \sqrt{\sum_{i=1}^{n} (\text{Di} - \overline{\text{D}})^2 / (n-1)} , \quad \text{para} \quad (n > 30)$$

$$\sigma = 13.31 \times 10^{-2} mm$$

Deflexión característica: Empleamos la ecuación (8)

$$D_C = \overline{D} + t * \sigma$$

$$D_C = 57,95 \times 10^{-2} mm + 1,282 \times 13,31 \times 10^{-2} mm$$
$$D_C = 75,02 \times 10^{-2} mm$$

Deflexión admisible: Empleamos la ecuación (9)

$$D_a = (1, 15/N18)^{1/4}$$

$$D_{a} = \left(\frac{\left(\frac{1,15}{0,3622}\right)^{\frac{1}{4}} * 1000}{10}\right)$$
$$D_{a} = 133,5$$
$$D_{a} = 133,5 \times 10^{-2} \text{ mm}$$

Deflexión crítica: Empleamos la ecuación (10)

 $D_{cr} = (1,90/N18)^{1/5.3}$

$$D_{cr} = \left(\frac{\left(\frac{1,90}{0,3622}\right)^{\frac{1}{5,3}} \times 1000}{10}\right)$$
$$D_{cr} = 137$$
$$D_{cr} = 137 \times 10^{-2} \text{ mm}$$

Radio curvatura: Empleamos la ecuación (4)

$$R_{\rm c} = \frac{10*25^2}{2*(D_0 - D_{25})}$$

4.1.1.3 Evaluación de los Parámetros.

Los comportamientos de la subrasante y pavimento se analizaron según la tabla 6, las características del pavimento de acuerdo al tipo de deflexión y radio curvatura, propuesto por el método CONREVIAL.

Tabla 25

Evaluación de los parámetros

Progres. Km.	Deflexión (x 10 ⁻² mm)	Radio de curvatura (m)	Deflexión admisible (x 10 ⁻² mm)	Radio de curvatura mín. (m)	Actuación de subrasante	Actuación de pavimento
23+000	43	177	133,50	100	Bueno	Bueno
23+025	48	159	133,50	100	Bueno	Bueno
23+050	61	126	133,50	100	Bueno	Bueno
23+075	68	112	133,50	100	Bueno	Bueno
23+100	67	114	133,50	100	Bueno	Bueno
23+125	47	162	133,50	100	Bueno	Bueno
23+150	64	120	133,50	100	Bueno	Bueno
23+175	47	162	133,50	100	Bueno	Bueno
23+200	52	147	133,50	100	Bueno	Bueno
23+225	60	128	133,50	100	Bueno	Bueno
23+250	72	106	133,50	100	Bueno	Bueno
23+275	78	98	133,50	100	Bueno	Malo
23+300	76	99	133,50	100	Bueno	Malo
23+325	53	144	133,50	100	Bueno	Bueno
23+350	64	120	133,50	100	Bueno	Bueno
23+375	61	124	133,50	100	Bueno	Bueno
23+400	54	139	133,50	100	Bueno	Bueno
23+425	54	139	133,50	100	Bueno	Bueno
23+450	64	120	133,50	100	Bueno	Bueno
23+475	72	106	133,50	100	Bueno	Bueno
23+500	52	147	133,50	100	Bueno	Bueno
23+525	72	106	133,50	100	Bueno	Bueno
23+550	37	209	133,50	100	Bueno	Bueno
23+575	68	112	133,50	100	Bueno	Bueno
23+600	57	135	133,50	100	Bueno	Bueno
23+625	40	187	133,50	100	Bueno	Bueno
23+650	44	171	133,50	100	Bueno	Bueno
23+675	59	130	133,50	100	Bueno	Bueno
23+700	68	112	133,50	100	Bueno	Bueno
23+725	72	106	133,50	100	Bueno	Bueno
23+750	80	95	133,50	100	Bueno	Malo
23+775	67	114	133,50	100	Bueno	Bueno

23+800	58	132	133,50	100	Bueno	Bueno
23+825	49	156	133,50	100	Bueno	Bueno
23+850	52	147	133,50	100	Bueno	Bueno
23+875	59	130	133,50	100	Bueno	Bueno
23+900	51	150	133,50	100	Bueno	Bueno
23+925	65	119	133,50	100	Bueno	Bueno
23+950	72	106	133,50	100	Bueno	Bueno
23+975	69	110	133,50	100	Bueno	Bueno
24+000	33	234	133,50	100	Bueno	Bueno

Progres. Km.	Deflexión (x 10 ⁻² mm)	Radio de curvatura (m)	Deflexión admisible (x 10 ⁻² mm)	Radio de curvatura mín. (m)	Actuación de subrasante	Actuación de pavimento
24+025	68	112	133,50	100	Bueno	Bueno
24+050	64	119	133,50	100	Bueno	Bueno
24+075	74	103	133,50	100	Bueno	Bueno
24+100	85	90	133,50	100	Bueno	Malo
24+125	40	191	133,50	100	Bueno	Bueno
24+150	45	167	133,50	100	Bueno	Bueno
24+175	51	151	133,50	100	Bueno	Bueno
24+200	56	138	133,50	100	Bueno	Bueno
24+225	64	119	133,50	100	Bueno	Bueno
24+250	51	151	133,50	100	Bueno	Bueno
24+275	47	162	133,50	100	Bueno	Bueno
24+300	69	111	133,50	100	Bueno	Bueno
24+325	48	160	133,50	100	Bueno	Bueno
24+350	68	112	133,50	100	Bueno	Bueno
24+375	64	119	133,50	100	Bueno	Bueno
24+400	52	148	133,50	100	Bueno	Bueno
24+425	33	231	133,50	100	Bueno	Bueno
24+450	40	191	133,50	100	Bueno	Bueno
24+475	88	89	133,50	100	Bueno	Malo
24+500	65	117	133,50	100	Bueno	Bueno
24+525	73	105	133,50	100	Bueno	Bueno
24+550	56	135	133,50	100	Bueno	Bueno
24+575	56	138	133,50	100	Bueno	Bueno
24+600	41	185	133,50	100	Bueno	Bueno

24+625	46	167	133,50	100	Bueno	Bueno
24+650	77	100	133,50	100	Bueno	Malo
24+675	74	103	133,50	100	Bueno	Bueno
24+700	56	138	133,50	100	Bueno	Bueno
24+725	64	119	133,50	100	Bueno	Bueno
24+750	52	148	133,50	100	Bueno	Bueno
24+775	56	138	133,50	100	Bueno	Bueno
24+800	52	148	133,50	100	Bueno	Bueno
24+825	40	191	133,50	100	Bueno	Bueno
24+850	96	79	133,50	100	Bueno	Malo
24+875	32	238	133,50	100	Bueno	Bueno
24+900	41	185	133,50	100	Bueno	Bueno
24+925	50	154	133,50	100	Bueno	Bueno
24+950	52	148	133,50	100	Bueno	Bueno
24+975	41	182	133,50	100	Bueno	Bueno
25+000	45	167	133,50	100	Bueno	Bueno

Resumen de la tabla 25, se aprecia en las tablas 26 y 27.

Tabla 26

Resumen de resultados de deflexiones máximas

Puntos de ens deflexión adn	ayo que sobrepasan la nisible (133.5x 10 ⁻² mm)	Puntos que c admisit	umplen con la deflexión ble (133,5x 10 ⁻² mm)
Cantidad	Porcentaje %	Cantidad	Porcentaje %
0	0	81	100

Tabla 27

Resumen de resultados de radios de curvatura

Puntos de ensayo q de cur	ue no cumplen con el radio vatura > 100m	Puntos de ensayo que si cumplen con el radio de curvatura > 100m		
Cantidad	Porcentaje %	Cantidad	Porcentaje %	
6	7,4	75	92,6	

En la tabla 28 se aprecia la comparación de los parámetros de evaluación del pavimento en estudio; en la cual, la deflexión característica es menor a la deflexión admisible y el radio de curvatura promedio si cumple con el radio curvatura mínimo fijado por el método CONREVIAL.

Tabla 28

~	• •	1	/ .
Com	paracion	de	parametros
			P

Parámetros a evaluar				Parámetros propuestas por CONREVIAL		
Deflexión característica (mm)	Deflexión promedio (mm)	Radio curvatura promedio (m)	Deflexión admisible (mm)	Radio curvatura (m)		
75,02 x 10 ⁻²	57,95 x 10^{-2}	138,96	133,5 <i>x</i> 10 ⁻²	>100		

4.1.1.4 Deflectograma.

En la figura 80 y 82, se aprecia el deflectograma de acuerdo a los valores de deflexiones máxima obtenidas en cada segmento evaluado en el carril derecho de la infraestructura vial, además están considerados los parámetros. La variación de las deflexiones en los puntos ensayados son valores determinados desde 32×10^{-2} mm. Hasta 96 x 10^{-2} mm. Los puntos con deflexiones elevados son los que representan menor capacidad estructural, también se evidencia que la deflexión admisible 133,5 x 10^{-2} mm. No fue superado por deflexión características 75,02 x 10^{-2} mm. Por lo que se indica que se garantiza un comportamiento satisfactorio del pavimento en la relación con el tráfico.

Finalmente mediante la deflectometría se determina los sectores características o comportamiento homogéneo correspondiente a deflexión característica, que es el valor que mejor representa un determinado sector.

Así, como se aprecia en la tabla 27 que el 96,2% cumple con parámetro de radio curvatura, y el 7,4% no cumple. En la figura 81 y 83 se observa el deflectograma la evaluación estadística.

DEFLECTOGRAMA Km. 23 + 000 - Km. 24 + 000

Figura 80. Deflectograma (progresiva 23+000 a 24+000 km).

RADIO CURVATURA Km. 23 + 000 - Km. 24 + 000

Figura 81. Radio curvatura (progresiva 23+000 a 24+000 km)

DEFLECTOGRAMA Km. 24 + 000 - Km. 25 + 000

Figura 82. Deflectograma (progresiva 24+000 a 25+000 km)

RADIO CURVATURA Km. 24 + 000 - Km. 25 + 000

Figura 83. Radio curvatura (progresiva 24+000 a 25+000 km)

4.1.2 Resultados de los ensayos de propiedades físicas y mecánicas de los materiales.

4.1.2.1 Análisis granulométrico de agregados gruesos y finos.

El ensayo de granulometría se ejecutó para material base, sub base y subrasante según las normatividades vigentes, ASTM C 136, manual de ensayos de material 2016 del MTC E 204 y EG-2013, el resultado se aprecia en tabla 29.

Tabla 29

Resultados							
Сара	Base	Subbase		Subra	isante		
Progresiva Km.	23+000 a 25+000	23+000 a 25+000	23+275	23+750	24+475	24+850	
Tamiz ASTM		Por	centaje qu	e pasa (%)			
3"	0	0	100	100	100	98,2	
2"	100	100	98,4	94,6	100	90,8	
N° 4	41,1	40,5	55,4	62,7	55,1	48,9	
N° 200	5,5	4,1	8,8	27,4	14,8	11,12	
Características							
Grava (%)	58,88	59,50	44,60	37,33	44,95	51,14	
Arena (%)	41,12	40,50	55,40	62,67	55,05	48,86	
Finos (%)	5,50	4,12	8,83	27,37	14,77	11,16	

Resumen de resultados de ensayo de granulometría

4.1.2.2 Ensayo de Límites de ATTERBERG.

Los ensayos del límite liquido de los suelos es realizado de acuerdo la normatividad de la MTC E 110 y los ensayos del límite plástico de los suelos e índice de plasticidad se ejecutaron según MTC E 111, ambos ensayos con ASTM D 4318, para materiales de base, sub base y subrasante, ver tabla 30.

Tabla 30

Resultados						
Сара	Base	Subbase	e Subrasante			
Progresiva Km.	23+000 a 25+000	23+000 a 25+000	23+275	23+750	24+475	24+850
Límite líquido	26%	30%	44,90%	38,10%	41,60%	37,70%
Límite plástico	0%	26%	37,60%	29,80%	36,20%	30,40%
Índice de No plasticidad No		4%	7,30%	8,30%	5,40%	7,30%
	No plástico	Ligeramente plástico	Plasticidad baja	Plasticidad baja	Plasticidad baja	Plasticidad baja

Resumen de resultados de ensayo de límites de Atterberg.

4.1.2.3 Clasificación de suelos según SUCS y AASHTO.

La clasificación del suelo fue por sistema SUCS y AASHTO con las cuales se realizaron para material base, sub base y subrasante, ver tabla 31.

Tabla 31

Resumen de resultados de clasificación de suelo por sistemas de SUCS y AASHTO. (A)

Resultados					
Сара	Base	Subbase	Subrasante 23+275		
Progresiva Km.	23+000 a 25+000	23+000 a 25+000			
	GP, GM	GW	SP, SM		
S.U.C.S.	Grava mal graduada con limo con arena	Grava bien graduada con arena	Arena mal graduada con limo con grava		
	Suelo de partícula gruesa (con símbolo doble)	Suelo de partícula gruesa	Suelo de partícula gruesa (con símbolo doble)		
	A-1-a	A-1-a	A-2-5		
AASHTO	Fragmentos de roca, grava y arena	Fragmentos de roca, grava y arena	Grava y arena arcillosa o limosa		
	Excelente a bueno como subgrado	Excelente a bueno como subgrado	Excelente a bueno como subgrado		

Nota: Resultados de base granular, subbase y subrasante (progresiva: 23+275 Km)

La clasificación del suelo realizado por ambos sistemas para material subrasante, dicho resumen de resultados se muestra en tabla 32.

Tabla 32

Resumen de resultados de clasificación de suelo por sistemas de SUCS y AASHTO. (B).

Resultados						
Capa	Subrasante					
Progresiva Km.	23+750	24+475	24+850			
	SM	GM	GP, GM			
S.U.C.S.	Arena limosa, mezclas de arena y limo	Grava limosa con arena	Grava mal graduada con limo con arena, con bloques			
	Suelo de partícula gruesa (suelo sucio)	Suelo de partícula gruesa con finos (suelos sucio)	Suelo de partícula gruesa (con símbolo doble)			
	A-2-4	A-1-b	A-2-4			
AASHTO	Grava y arena arcillosas o limosa	Fragmentos de roca, grava y arena	Grava y arena arcillosa o limosa			
	Excelente a bueno como subgrado	Excelente a bueno como subgrado	Excelente a bueno como subgrado			

Nota: Resultados de subrasante (progresiva: 23+750, 24+475, 24+850 Km)

4.1.2.4 Ensayo de proctor modificado.

Los ensayos de compactación de suelos en laboratorio se realizaron utilizando una energía modificada (proctor modificado), la misma que se ha desarrollado conforme a la normatividad de la ASTM D 1557 y el MTC E 115, para materiales de base, sub base y subrasante, obteniendo los valores (Ver tabla 33).

Tabla 33

Resultados						
Capa	Base	Subbase	Subrasante			
Progresiva Km.	23+000 a 25+000	23+000 a 25+000	23+275	23+750	24+475	24+850
Densidad máxima seca (g/cm3)	2,093	2,051	1,684	1,568	1,645	1,471
Humedad óptima (%)	7,10	9,50	13,50	11,90	12,30	13,45

Resumen de resultados de ensayo de Proctor Modificado.

4.1.2.5 Ensayo de CBR de suelos (Laboratorio).

Los ensayos de CBR de suelos se efectuó acorde a la normatividad de la ASTM D 1883, el MTC E 132 y EG-2013 para materiales de base, sub base y subrasante, determinando los resultados que se aprecia en la tabla 34.

Tabla 34

Resumen de resultados de ensayo de CBR.

Resultados						
Capa	Base	Subbase	Subrasante			
Progresiva Km.	23+000 a 25+000	23+000 a 25+000	23+275	23+750	24+475	24+850
El CBR al 95%	87%	53%	12%	14%	10%	13%
El CBR al 100%	99%	89%	20%	24,5%	17%	19,5%

4.1.3 Determinación del esfuerzo vertical y la deflexión por expresión analítica (Formulas), por método SHELL.

La deflexión por medio de expresión analítica (fórmulas) basada en la teoría de comportamiento elástico, mediante este método se complementó a la investigación el método CONREVIAL.

En vista que, se realizó el estudio de investigación en un tramo 23+000 a 25+000 Km. (2 kilómetros), a través del método CONREVIAL, mediante el cual se obtuvo cuatro (4) puntos de estudio de deflexiones máxima (progresivas: 23+275, 23+750, 24+475 y 24+850 Km). Es decir, cada 500 m longitudinales. La evaluación y análisis se ejecutó por método SHELL en los puntos indicados. Eje trasero o equivalente:

8,2 Tn.

$$8,2 \operatorname{Fq} * \left(\frac{1000 \operatorname{Kg.}}{1 \operatorname{Tq}}\right) = 8200 \operatorname{Kg.}$$

Cálculo de carga aplicada (P):

$$\frac{P}{2}$$
, = $\frac{8200 \text{ kg}}{2}$ = 4100 kg.

Cálculo de la presión de contacto (q):

 $q = 5.6 \, \text{Kg/cm}^2$

$$5.6 \frac{\text{kg}}{\text{cm}^2} * \left(\frac{9,8067 \text{ N}}{1 \text{ kg}}\right) * \left(\frac{10\ 000\ \text{cm}^2}{1\ \text{m}^2}\right) = 549\ 175,20\ \frac{\text{N}}{\text{m}^2}$$

$$549\ 175,20\ \text{Pa} * \left(\frac{1\ \text{kPa}}{1000\ \text{Pa}}\right) * \left(\frac{1\ \text{MPa}}{1000\ \text{kPa}}\right) = 0,5491752\ \text{MPa}$$

$$\approx 0,55\ \text{MPa}$$

Cálculo del área de contacto (Ac): Empleamos la ecuación (14)

$$Ac = \frac{P}{q}$$

$$Ac = \frac{4,100 \text{ kg}}{5.6 \text{ kg/cm}^2}$$
, $Ac = 732,14 \text{ cm}^2$

Cálculo del radio de plato de carga (a): Empleamos la ecuación (16)

$$a = \sqrt{\frac{P}{\pi q}}$$
$$a = \sqrt{\frac{732,14 \text{ cm}^2}{3,141516}} = 15,27 \text{ cm}$$

Cálculo de módulo de elasticidad y coeficiente de poisson para:

Carpeta asfáltica (E):

El diseño de mezcla asfáltica en caliente MAC-2 por ensayo de estabilidad MARSHALL. Dicho diseño tiene un contenido óptimo de cemento asfáltico de

5,4%, tal cual se aprecia en la tabla 17, en efecto, para determinar el módulo elasticidad nos basamos a la investigación de Freddy J. Sánchez (Véase tabla 10). Resultado para grupo Marshall 75 golpes por cara.

P _b	E* (Psi)	
5%	230 000,00	
5,4%	Y	
5,5%	190 000,00	

En base a los valores, se realizó una interpolación utilizando la ecuación 33.

$$Y = Y_0 + \frac{Y_1 - Y_0}{X_1 - X_0} (X - X_0)$$

Y = 230 000,00 Psi + $\frac{190\ 000,00\ Psi\ -230\ 000,00\ Psi}{5,5\%\ -5\%}$ (5,4% - 5%)

Y= 198 000,00 Psi

Convertiendo a MPa

$$198\ 000,00\ \frac{1\ \text{lbf}}{pulg^2} * \left(\frac{1\ \text{N}}{0,2248\ \text{lbf}}\right) * \left(\frac{1\ \text{pulg}}{25,40\ \text{mm}}\right)^2 = 1365,22\ \text{N/mm}^2$$
$$\text{E} = 1,365\ \text{MPa}$$

Para determinar los módulos de elasticidad de diferentes tipos de materiales, se utilizó la metodología de Powell, Potter, Mayhew y Nunn, a través de la ecuación
28. La cual, nos permite basarnos a los resultados de los ensayos de CBR, indicada en la tabla 34.

Base granular (E)

CBR al 95% = 87%

 $E = 17,6 CBR^{0,64} (MPa)$

 $E = 17,6 (87\%)^{0,64} = 307 MPa$

Sub base granular (E)

CBR al 95% = 53%

 $E = 17.6 (53\%)^{0.64} = 223 MPa$

Subrasante (E)

Primer punto de estudio: Progresiva 23+275 km.

CBR al 95% = 12%

 $E = 17,6 (12\%)^{0,64} = 86 MPa$

Segundo punto de estudio: Progresiva 23+750 km.

CBR al 95% = 14%

 $E = 17,6 (14\%)^{0,64} = 95 MPa$

Tercer punto de estudio: Progresiva 24+475 km.

CBR al 95% = 10%

 $E = 17,6 (10\%)^{0,64} = 77 MPa$

Cuarto punto de estudio: Progresiva 24+850 km.

CBR al 95% = 13% E = 17,6 $(13\%)^{0,64}$ = 91 MPa

Empleamos el coeficiente de poisson de acuerdo a los rangos de diferentes tipos de materiales, la cual se aprecia en la tabla 8, para progresiva 23+000 a 25+000 km.

Carpeta asfáltica: (µ)

 $\mu = 0.35$

Base granular (μ)

 $\mu = 0,37$

Subbase granular (μ)

 $\mu = 0,40$

Subbase granular (μ)

 $\mu = 0,45$

Para determinar la deflexión mediante fórmulas se utilizó el coeficiente de poisson promedio: $\mu_{promedio} = 0,39$.

Primer punto de estudio: Progresiva 23+275 km. Eje X.

Figura 84. Modelo estructural en eje X. (Progresiva 23+275 km).

Cálculo del esfuerzo vertical de compresión sobre la subrasante, σ_z :

El valor de h_e se determina a través de la ecuación (69).

$$h_e = 0.8 \sum_{i=1}^{n-1} h_i \sqrt[3]{\frac{E_i}{E_n}}$$

$$h_e = 0.8(5cm) \sqrt[3]{\frac{1365MPq}{86MPq}} + 0.8(15cm) \sqrt[3]{\frac{307MPq}{86MPq}} + 0.8(15cm) \sqrt[3]{\frac{223MPq}{86MPq}}$$

$$h_e = 44,89 \ cm$$

Cálculo de esfuerzo vertical: Empleamos la ecuación (70)

$$\sigma_{z} = q \left[1 - \frac{1}{\left[1 + \left(\frac{a}{h_{e}}\right)^{2} \right]^{3/2}} \right]$$

$$\sigma_{z} = 0.55 \text{MPa} \left[1 - \frac{1}{\left[1 + \left(\frac{15.27 \text{ cm}}{44.89 \text{ cm}}\right)^{2} \right]^{3/2}} \right]$$

$$\sigma_{\rm z} = 0,08330 \,{\rm MPa}$$

Conversión de σ_z de MPa a Kg/cm².

$$0,08330 \text{ MPa} * \left(\frac{1000 \text{ kPa}}{1 \text{ MPa}}\right) * \left(\frac{1000 \text{ Pa}}{1 \text{ kPa}}\right) = 83300,00 \text{ Pa}$$

$$83300,00 \frac{N}{m^2} * \left(\frac{1 \text{ Kgf}}{9,8067 \text{ N}}\right) * \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 =$$

$$83300,00 \frac{N}{m^2} * \left(\frac{1 \text{ kgf}}{9,8067 \text{ N}}\right) * \left(\frac{1 \text{ m}^2}{10 000 \text{ cm}^2}\right) = 0,8494 \frac{Kgf}{\text{ cm}^2}$$

$$\sigma_z = 0,8494 \frac{Kgf}{\text{ cm}^2}$$

Cálculo de la deflexión en la superficie de la estructura Δ_0 :

El módulo equivalente \hat{E} se determina a través de la ecuación (66).

$$\hat{E} = E_1 \left[\frac{h_1 + h_2 \sqrt[3]{\frac{E_2}{E_1}} + h_3 \sqrt[3]{\frac{E_3}{E_1}} + \dots + h_{n-1} \sqrt[3]{\frac{E_{n-1}}{E_1}}}{\sum_{i=1}^{n-1} h_i} \right]^3$$

$$\hat{E} = E_1 \left[\frac{h_1 + h_2 \sqrt[3]{\frac{E_2}{E_1}} + h_3 \sqrt[3]{\frac{E_3}{E_1}}}{\sum_{i=1}^{n-1} h_i} \right]^3$$

$$\hat{E} = E_1 \left[\frac{h_1 \sqrt[3]{\frac{E_1}{E_1}} + h_2 \sqrt[3]{\frac{E_2}{E_1}} + h_3 \sqrt[3]{\frac{E_3}{E_1}}}{\sum_{i=1}^{n-1} h_i} \right]^3$$

$$\hat{E} = 1365MPa \left[\frac{5 \text{ cm} * \sqrt[3]{\frac{1365}{1365} \text{ MPa}} + 15 \text{ cm} * \sqrt[3]{\frac{307}{1365} \text{ MPa}} + 15 \text{ cm} * \sqrt[3]{\frac{223}{1365} \text{ MPa}} }{5 \text{ cm} + 15 \text{ cm} + 15 \text{ cm}} \right]^3$$

Para cálculo de deflexión en la superficie empleamos la ecuación (65)

$$\Delta_0 = \frac{2qa(1-\mu^2)}{E_n} \left[\frac{1-(\frac{E_n}{\hat{E}})}{\left[1+(\frac{h_1+h_2+\ldots+h_{n-1}}{a})^2(\frac{\hat{E}}{E_n})^{2/3}\right]^{1/2}} + \frac{E_n}{\hat{E}} \right]$$

$$\Delta_{0} = \frac{2qa(1-\mu^{2})}{E_{n}} \left[\frac{1-(\frac{E_{n}}{\hat{E}})}{\left[1+(\frac{h_{1}+h_{2}+h_{3}}{a})^{2}(\frac{\hat{E}}{E_{n}})^{2/3}\right]^{1/2}} + \frac{E_{n}}{\hat{E}} \right]$$

$$\begin{split} \Delta_0 &= \frac{2(0.55 \text{MRa})(15,27 \text{cm})(1-0.39^2)}{86 \text{ MPa}} \Biggl[\frac{1 - (\frac{36 \text{ MPa}}{354 \text{ MPa}})}{\left[\left[1 + (\frac{35 \text{ cm}}{15,27 \text{ cm}})^2 (\frac{354 \text{ MPa}}{86 \text{ MPa}})^{2/3} \right]^{1/2}} + \frac{86 \text{MPa}}{354 \text{ MPa}} \Biggr] \\ \Delta_0 &= 7,316 \text{E}^{-2} \text{ cm}. \\ \Delta_0 &= 0,07316 \text{ cm}. \\ \Delta_0 &= 0,7316 \text{ mm}. \end{split}$$

Cálculo la deflexión en la capa de subrasante Δ_s :

Para calcular espesor equivalente empleamos la ecuación (69).

$$h_{e} = 0.8 \sum_{i=1}^{n-1} h_{i} \sqrt[3]{\frac{E_{i}}{E_{n}}}$$

$$h_{e} = 0.8(5cm) \sqrt[3]{\frac{1365MPa}{86MPa}} + 0.8(15cm) \sqrt[3]{\frac{307MPa}{86MPa}} + 0.8(15cm) \sqrt[3]{\frac{223MPa}{86MPa}}$$

$$h_{e} = 44.89 cm$$

Se determina el valor de P a través de la ecuación (68)

 $P = qa^{2}\pi$ q = 0,55 MPa a = 15,27 cm π = 3,141516 0,55 MRa * $\left(\frac{0,1 \text{ kN/cm}^{2}}{1 \text{ MRa}}\right)$ = 0,055 kN/cm² $P = 0,055 \text{ kN/cm}^{2} * (15,27 \text{ cm})^{2} * 3,141516$ P = 40,29 kN

Para cálculo de deflexión en la subrasante empleamos la ecuación (67).

$$\Delta_{\rm s} = \frac{P}{2 \, {\rm E}_n \, {\rm h}_e \sqrt{1 + \frac{a}{{\rm h}_e}}}$$

86 MPa *
$$\left(\frac{0.1 \text{ kN/cm}^2}{1 \text{ MPa}}\right) = 8.6 \text{ kN/cm}^2$$

$$\Delta_{\rm s} = \frac{40,29 \,\rm kN}{2 \, \left(8,6 \,\rm cm^2\right) (44,89 \,\rm cm) \sqrt{1 + \frac{15,27 \,\rm cm}{44,89 \,\rm cm}}}$$

$$\Delta_{\rm S} = 4,508 {\rm E}^{-2} {\rm ~cm}.$$

$$\Delta_{\rm S} = 0,04508$$
 cm.

$$\Delta_{\rm S} = 0,4508 \, {\rm mm}.$$

Cálculo la deflexión de paquete estructural:

$$\begin{split} &\Delta_0 - \Delta_s \\ &\Delta_0 = \Delta_{máx.} \\ &\Delta_{paq. \ estruc.} = \Delta_{máx.} - \Delta_s \\ &\Delta_{paq. \ estruc.} = 0,7316 \ mm - 0,4508 \ mm \\ &\Delta_{paq. \ estruc.} = 0,2808 \ mm. \end{split}$$

Tabla 35

Сара	Parámetro	Valor	Valor admisible		Unidades		Observación
		servicio					
Subrasante	Esfuerzo vertical de compresión sobre la subrasante σ_{-4}	0,8494	1,0107	(CRR)	Kg/cm ²	Cumple	Control de ahuellamiento
Asfáltica	Deformación radial de tracción en la base de la capa asfáltica $\varepsilon_{r,1}$	-	1,088x10	-4 (CRR)	-	-	Control de fatiga
Subrasante	Deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4}$	-	7,949x10	-4 (Shell)	-	-	Control de ahuellamiento
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{max.}$	0,7316	1,1616	(Huang)	mm	Cumple	Control de deflexión
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	0,4508	-		mm	-	-
Paquete estructural	Deflexión en paquete estructural $\Delta_{paq.est.} = \Delta_{máx.} - \Delta_{s.}$	0,2808	-		mm	-	-

Parámetros de verificación de valores de servicio por fórmulas y admisible del modelo estructural. (Progresiva: 23+275 Km).

Nota: Para valores admisibles se empleó las ecuaciones 72, 74, 75 y 76.

Segundo punto de estudio: Progresiva 23+750 km, Eje X.

Figura 85. Modelo estructural en eje X. (Progresiva 23+750 km)

Cálculo del esfuerzo vertical de compresión sobre la subrasante, σ_z :

El valor de h_e se determina a través de la ecuación (69).

$$h_e = 0.8 \sum_{i=1}^{n-1} h_i \sqrt[3]{\frac{E_i}{E_n}}$$

$$h_e = 0.8(5cm) \sqrt[3]{\frac{1365MPq}{95MPq}} + 0.8(15cm) \sqrt[3]{\frac{307MPq}{95MPq}} + 0.8(15cm) \sqrt[3]{\frac{223MPq}{95MPq}}$$

 $h_e = 43,41 \ cm$

El Cálculo de esfuerzo vertical determinamos a través de la ecuación (70).

$$\sigma_{\rm z} = q \left[1 - \frac{1}{\left[1 + \left(\frac{a}{h_e}\right)^2 \right]^{3/2}} \right]$$

$$\sigma_{\rm z} = 0.55 \text{MPa} \left[1 - \frac{1}{\left[1 + \left(\frac{15.27 \text{ gm}}{43.41 \text{ cm}}\right)^2 \right]^{3/2}} \right]$$

 $\sigma_{\rm z}~=$ 0,0883 MPa

Conversión de σ_z de MPa a Kg/cm².

$$0,08830 \text{ MPa} * \left(\frac{1000 \text{ kPa}}{1 \text{ MPa}}\right) * \left(\frac{1000 \text{ Pa}}{1 \text{ kPa}}\right) = 88\,300,00 \text{ Pa}$$

$$88\,300,00 \frac{N}{m^2} * \left(\frac{1 \text{ Kgf}}{9,8067 \text{ N}}\right) * \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 =$$

$$88\,300,00 \frac{N}{m^2} * \left(\frac{1 \text{ kgf}}{9,8067 \text{ N}}\right) * \left(\frac{1 \text{ m}^2}{10 000 \text{ cm}^2}\right) = 0,9004 \frac{Kgf}{\text{cm}^2}$$

$$\sigma_z = 0,9004 \frac{Kgf}{\text{cm}^2}$$

Cálculo de la deflexión en la superficie de la estructura Δ_0 :

El módulo equivalente \hat{E} se determina a través de la ecuación (66).

$$\hat{E} = E_1 \left[\frac{h_1 + h_2 \sqrt[3]{\frac{E_2}{E_1}} + h_3 \sqrt[3]{\frac{E_3}{E_1}} + \dots + h_{n-1} \sqrt[3]{\frac{E_{n-1}}{E_1}}}{\sum_{i=1}^{n-1} h_i} \right]^3$$

$$\hat{E} = E_{1} \left[\frac{h_{1} + h_{2} \sqrt[3]{\frac{E_{2}}{E_{1}}} + h_{3} \sqrt[3]{\frac{E_{3}}{E_{1}}}}{\sum_{i=1}^{n-1} h_{i}} \right]^{3}$$

$$\hat{E} = E_{1} \left[\frac{h_{1} \sqrt[3]{\frac{E_{1}}{E_{1}}} + h_{2} \sqrt[3]{\frac{E_{2}}{E_{1}}} + h_{3} \sqrt[3]{\frac{E_{3}}{E_{1}}}}{\sum_{i=1}^{n-1} h_{i}} \right]^{3}$$

$$\hat{E} = 1365 \text{MPa} \left[\frac{5 \text{ cm} * \sqrt[3]{\frac{1365 \text{ MPa}}{1365 \text{ MPa}}} + 15 \text{ cm} * \sqrt[3]{\frac{307 \text{ MPa}}{1365 \text{ MPa}}} + 15 \text{ cm} * \sqrt[3]{\frac{223 \text{ MPa}}{1365 \text{ MPa}}} \right]^{3}$$

$$\hat{E} = 354 \text{ MPa}$$

Para cálculo de deflexión en la superficie empleamos la ecuación (65).

$$\Delta_{0} = \frac{2qa(1-\mu^{2})}{E_{n}} \left[\frac{1-(\frac{E_{n}}{\hat{E}})}{\left[1+(\frac{h_{1}+h_{2}+...+h_{n-1}}{a})^{2}(\frac{\hat{E}}{E_{n}})^{2/3}\right]^{1/2}} + \frac{E_{n}}{\hat{E}} \right]$$

$$\Delta_{0} = \frac{2qa(1-\mu^{2})}{E_{n}} \left[\frac{1-(\frac{E_{n}}{\hat{E}})}{\left[1+(\frac{h_{1}+h_{2}+h_{3}}{a})^{2}(\frac{\hat{E}}{E_{n}})^{2/3}\right]^{1/2}} + \frac{E_{n}}{\hat{E}} \right]$$

$$\begin{split} \Delta_0 &= \frac{2(0,55\text{MRa})(15,27\text{cm})(1-0,39^2)}{95\text{ MPa}} \left[\frac{1 - \left(\frac{95\text{ MPa}}{354\text{ MPa}}\right)}{\left[1 + \left(\frac{35\text{ Cm}}{15,27\text{ cm}}\right)^2 \left(\frac{354\text{ MPa}}{95\text{ MPa}}\right)^{2/3}\right]^{1/2}} + \frac{95\text{MPa}}{354\text{ MPa}} \right] \\ \Delta_S &= 6,994\text{E}^{-2} \text{ cm} \\ \Delta_0 &= 0,06994 \text{ cm} \\ \Delta_0 &= 0,7000 \text{ mm.} \end{split}$$

Cálculo la deflexión en la capa de subrasante Δ_s :

Para hallar el espesor equivalente empleamos la ecuación (69).

$$h_{e} = 0.8 \sum_{i=1}^{n-1} h_{i} \sqrt[3]{\frac{E_{i}}{E_{n}}}$$

$$h_{e} = 0.8(5cm) \sqrt[3]{\frac{1365MRa}{95MPa}} + 0.8(15cm) \sqrt[3]{\frac{307MPa}{95MPa}} + 0.8(15cm) \sqrt[3]{\frac{223MPa}{95MPa}}$$

$$h_{e} = 43.41 cm$$

Se determina el valor de P a través de la ecuación (68).

$$P = qa^{2}\pi$$

$$q = 0,55 \text{ MPa}$$

$$a = 15,27 \text{ cm}$$

$$\pi = 3,141516$$

$$0,55 \text{ MRa} * \left(\frac{0,1 \text{ kN/cm}^{2}}{1 \text{ MRa}}\right) = 0,055 \text{ kN/cm}^{2}$$

$$P = 0,055 \text{ kN/cm}^{2} * (15,27 \text{ cm})^{2} * 3,141516$$

$$P = 40,29 \text{ kN}$$

Para cálculo de deflexión en la subrasante empleamos la ecuación (67).

$$\Delta_{s} = \frac{P}{2 E_{n} h_{e} \sqrt{1 + \frac{a}{h_{e}}}}$$
95 MPa * $\left(\frac{0.1 \text{ kN/cm}^{2}}{1 \text{ MPa}}\right) = 9.5 \text{ kN/cm}^{2}$

$$\Delta_{\rm s} = \frac{40,29 \,\rm kN}{2 \left(9,5 \frac{\rm kN}{\rm cm^2}\right) (43,41 \,\rm cm) \sqrt{1 + \frac{15,27 \,\rm cm}{43,41 \,\rm cm}}}$$

 $\Delta_{S} = 4,220E^{-2} \text{ cm}$ $\Delta_{S} = 0,04220 \text{ cm}$ $\Delta_{S} = 0,4220 \text{ mm}.$

Cálculo la deflexión de paquete estructural:

$$\Delta_0 - \Delta_s$$

 $\Delta_0 = \Delta_{máx.}$

 $\Delta_{\text{paq. estruc.}} = \Delta_{\text{máx.}} - \Delta_{\text{s}}$

 $\Delta_{paq. estruc.} = 0,7000 \text{ mm} - 0,4220 \text{ mm}$

 $\Delta_{\text{paq. estruc.}} = 0,2780 \text{ mm.}$

Tabla 36

Сара	Parámetro	Valor servicio	Valor admisible		Unidades		Observación	
Subrasante	Esfuerzo vertical de compresión sobre la subrasante ($\sigma_{z,4}$)	0,9004	1,2160	(CRR)	Kg/cm ²	Cumple	Control de ahuellamiento	
Asfáltica	Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$	-	1,088x10	-4 (CRR)	-	-	Control de fatiga	
Subrasante	Deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4}$	-	7,949x10	⁻⁴ (Shell)	-	-	Control de ahuellamiento	
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{máx.}$	0,7000	1,1616	(Huang)	mm	Cumple	Control de deflexión	
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	0,4220	-		mm	-	-	
Paquete estructural	Deflexión en paquete estructural $\Delta_{paq.est.} = \Delta_{máx.} - \Delta_{s.}$	0,2780	-		mm	-	-	

Parámetros de verificación de valores de servicio por formulas y admisible del modelo estructural. (Progresiva: 23+750 Km).

Nota: Para valores admisibles se empleó las ecuaciones 72, 74, 75 y 76.

Tercer punto de estudio: Progresiva 24+475 km, eje X.

Figura 86. Modelo estructural en eje X. (Progresiva 24+475 km)

Cálculo del esfuerzo vertical de compresión sobre la subrasante, σ_z :

El valor de h_e se determina a través de la ecuación (69).

$$h_e = 0.8 \sum_{i=1}^{n-1} h_i \sqrt[3]{\frac{E_i}{E_n}}$$

$$h_e = 0.8(5cm) \sqrt[3]{\frac{1365MPq}{77 MPq}} + 0.8(15cm) \sqrt[3]{\frac{307MPq}{77 MPq}} + 0.8(15cm) \sqrt[3]{\frac{223MPq}{77 MPq}}$$
$$h_e = 46,56 cm$$

Cálculo de esfuerzo vertical se obtiene mediante la ecuación (70).

$$\sigma_{z} = q \left[1 - \frac{1}{\left[1 + \left(\frac{a}{h_{e}}\right)^{2} \right]^{3/2}} \right]$$

$$\sigma_{z} = 0.55 \text{MPa} \left[1 - \frac{1}{\left[1 + \left(\frac{15.27 \text{ em}}{46.56 \text{ em}}\right)^{2} \right]^{3/2}} \right]$$

 $\sigma_{\rm z}~=$ 0,07814 MPa

Conversión de σ_z de MPa a Kg/cm².

$$0,07814 \text{ MPa} * \left(\frac{1000 \text{ kPa}}{1 \text{ MPa}}\right) * \left(\frac{1000 \text{ Pa}}{1 \text{ kPa}}\right) = 78 140,00 \text{ Pa}$$

$$78 140,00 \frac{N}{m^2} * \left(\frac{1 \text{ Kgf}}{9,8067 \text{ N}}\right) * \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 =$$

$$78 140,00 \frac{N}{m^2} * \left(\frac{1 \text{ kgf}}{9,8067 \text{ N}}\right) * \left(\frac{1 \text{ m}^2}{10 000 \text{ cm}^2}\right) = 0,7968 \frac{Kgf}{\text{cm}^2}$$

$$\sigma_z = 0,7968 \frac{Kgf}{\text{cm}^2}$$

Cálculo de la deflexión en la superficie de la estructura Δ_0 :

El módulo equivalente \hat{E} se determina a través de la ecuación (66).

$$\hat{E} = E_1 \left[\frac{h_1 + h_2 \sqrt[3]{\frac{E_2}{E_1}} + h_3 \sqrt[3]{\frac{E_3}{E_1}} + \dots + h_{n-1} \sqrt[3]{\frac{E_{n-1}}{E_1}}}{\sum_{i=1}^{n-1} h_i} \right]^3$$

$$\hat{E} = E_{1} \left[\frac{h_{1} + h_{2} \sqrt[3]{\frac{E_{2}}{E_{1}}} + h_{3} \sqrt[3]{\frac{E_{3}}{E_{1}}}}{\sum_{i=1}^{n-1} h_{i}} \right]^{3}$$

$$\hat{E} = E_{1} \left[\frac{h_{1} \sqrt[3]{\frac{E_{1}}{E_{1}}} + h_{2} \sqrt[3]{\frac{E_{2}}{E_{1}}} + h_{3} \sqrt[3]{\frac{E_{3}}{E_{1}}}}{\sum_{i=1}^{n-1} h_{i}} \right]^{3}$$

$$\hat{E} = 1365MPa \begin{bmatrix} 5 \text{ cm} * \sqrt[3]{\frac{1365}{1365} \text{ MPa}} + 15 \text{ cm} * \sqrt[3]{\frac{307}{1365} \text{ MPa}} + 15 \text{ cm} * \sqrt[3]{\frac{223}{1365} \text{ MPa}} \\ \hline 5 \text{ cm} + 15 \text{ cm} + 15 \text{ cm} \end{bmatrix}^3$$

 $\hat{E} = 354 \text{ MPa}$

Para cálculo de deflexión en la superficie empleamos la ecuación (65).

$$\Delta_{0} = \frac{2qa(1-\mu^{2})}{E_{n}} \left[\frac{1-(\frac{E_{n}}{\hat{E}})}{\left[1+(\frac{h_{1}+h_{2}+...+h_{n-1}}{a})^{2}(\frac{\hat{E}}{E_{n}})^{2/3}\right]^{1/2}} + \frac{E_{n}}{\hat{E}} \right]$$

$$\Delta_{0} = \frac{2qa(1-\mu^{2})}{E_{n}} \left[\frac{1-(\frac{E_{n}}{\hat{E}})}{\left[1+(\frac{h_{1}+h_{2}+h_{3}}{a})^{2}(\frac{\hat{E}}{E_{n}})^{2/3}\right]^{1/2}} + \frac{E_{n}}{\hat{E}} \right]$$

$$\Delta_{0} = \frac{2(0.55 \text{MRa})(15,27 \text{cm})(1-0.39^{2})}{77 \text{ MPa}} \left[\frac{1 - \left(\frac{77 \text{ MPa}}{354 \text{ MPa}}\right)}{\left[1 + \left(\frac{35 \text{ cm}}{15,27 \text{ cm}}\right)^{2} \left(\frac{354 \text{ MPa}}{77 \text{ MPa}}\right)^{2/3}\right]^{1/2}} + \frac{77 \text{ MPa}}{354 \text{ MPa}} \right]$$

$$\Delta_{0} = 7,696 \text{E}^{-2} \text{ cm}$$

$$\Delta_{0} = 0,07696 \text{ cm}$$

$$\Delta_{0} = 0,7696 \text{ mm}.$$

Cálculo la deflexión en la capa de subrasante Δ_s :

Para hallar el espesor equivalente empleamos la ecuación (69).

$$h_{e} = 0.8 \sum_{i=1}^{n-1} h_{i} \sqrt[3]{\frac{E_{i}}{E_{n}}}$$

$$h_{e} = 0.8(5cm) \sqrt[3]{\frac{1365MRa}{77MPa}} + 0.8(15cm) \sqrt[3]{\frac{307MPa}{77MPa}} + 0.8(15cm) \sqrt[3]{\frac{223MPa}{77MPa}}$$

$$h_{e} = 46,56 cm$$

Se determina el valor de P a través de la ecuación (68).

$$P = qa^{2}\pi$$

$$q = 0,55 \text{ MPa}$$

$$a = 15,27 \text{ cm}$$

$$\pi = 3,141516$$

$$0,55 \text{ MRa} * \left(\frac{0,1 \text{ kN/cm}^{2}}{1 \text{ MRa}}\right) = 0,055 \text{ kN/cm}^{2}$$

$$P = 0,055 \text{ kN/cm}^{2} * (15,27 \text{ cm})^{2} * 3,141516$$

P = 40,29 kN

Para cálculo de deflexión en la subrasante empleamos la ecuación (67).

$$\Delta_{s} = \frac{P}{2 E_{n} h_{e} \sqrt{1 + \frac{a}{h_{e}}}}$$
77 MPa * $\left(\frac{0.1 \text{ kN/cm}^{2}}{1 \text{ MPa}}\right) = 7.7 \text{ kN/cm}^{2}$

$$\Delta_{\rm s} = \frac{40,29 \,\rm kN}{2 \left(7,7 \,\frac{\rm kN}{\rm cm^2}\right) (46,56 \,\rm cm) \sqrt{1 + \frac{15,27 \,\rm cm}{46,56 \,\rm cm}}}$$

- $\Delta_{\rm S}=4,896E^{-2}~{\rm cm}$
- $\Delta_{\rm S}=$ 0,04896 cm

$$\Delta_{\rm S} = 0,4896 \, {\rm mm}.$$

Cálculo la deflexión de paquete estructural:

 $\Delta_0 = \Delta_{máx.}$

 $\Delta_0-\Delta_s$

 $\Delta_{\text{paq. estruc.}} = \Delta_{\text{máx.}} - \Delta_{\text{s}}$

 $\Delta_{\text{paq. estruc.}} = 0,7696 \text{ mm} - 0,4896 \text{ mm}$

 $\Delta_{\text{paq. estruc.}} = 0,2800 \text{ mm.}$

Tabla 37

Сара	Parámetro	Valor servicio	Valor admisible		Unidades		Observación
Subrasante	Esfuerzo vertical de compresión sobre	0,7968	0,8121	(CRR)	Kg/cm ²	Cumple	Control de ahuellamiento
	la subrasante $\sigma_{z,4}$				-	•	
Asfáltica	Deformación radial de tracción en la	-	1.088x10 ⁻⁴ (CRR)		-	-	Control de fatiga
	base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$		1,000110	(010)			control de langu
Subrasante	Deformación vertical de compresión	_	7,949x10 ⁻⁴ (Shell)		_	_	Control de abuellamiento
Bublusunte	sobre la subrasante $\boldsymbol{\varepsilon}_{z,4}$						control de andenamiento
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{\text{máx.}}$	0,7696	1,1616	(Huang)	mm	Cumple	Control de deflexión
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	0,4896	-		mm	-	-
Paquete estructural	Deflexión en paquete estructural	0.2000					
	$\Delta_{\text{pag.est.}} = \Delta_{\text{máx.}} - \Delta_{\text{s.}}$	0,2800	-		ınm	-	-

Parámetros de verificación de valores de servicio por fórmulas y admisible del modelo estructural. (Progresiva: 24+475 Km)

Nota: Para valores admisibles se empleó las ecuaciones 72, 74, 75 y 76

Cuarto punto de estudio: Progresiva 24+850 km, eje X.

Figura 87. Modelo estructural en eje X. (Progresiva 24+850 km)

Cálculo del esfuerzo vertical de compresión sobre la subrasante, σ_z :

El valor de h_e se determina a través de la ecuación (69).

$$h_e = 0.8 \sum_{i=1}^{n-1} h_i \sqrt[3]{\frac{E_i}{E_n}}$$

$$h_e = 0.8(5cm) \sqrt[3]{\frac{1365MPa}{91MPa}} + 0.8(15cm) \sqrt[3]{\frac{307MPa}{91MPa}} + 0.8(15cm) \sqrt[3]{\frac{223MPa}{91MPa}}$$

 $h_e = 44,04 \ cm$

Cálculo de esfuerzo vertical se obtiene mediante la ecuación (70).

$$\sigma_{z} = q \left[1 - \frac{1}{\left[1 + \left(\frac{a}{h_{e}}\right)^{2} \right]^{3/2}} \right]$$

$$\sigma_{z} = 0.55 MPa \left[1 - \frac{1}{\left[1 + \left(\frac{15.27 \text{ cm}}{44.04 \text{ cm}}\right)^{2} \right]^{3/2}} \right]$$

$$\sigma_{\rm z} = 0,08612 \,{\rm MPa}$$

Conversión de σ_z de MPa a Kg/cm².

$$0,08612 \text{ MPa} * \left(\frac{1000 \text{ kPa}}{1 \text{ MPa}}\right) * \left(\frac{1000 \text{ Pa}}{1 \text{ kPa}}\right) = 86\ 120,00 \text{ Pa}$$

$$86\ 120,00 \ \frac{N}{m^2} * \left(\frac{1 \text{ Kgf}}{9,8067 \text{ N}}\right) * \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 =$$

$$86\ 120,00 \ \frac{N}{m^2} * \left(\frac{1 \text{ kgf}}{9,8067 \text{ N}}\right) * \left(\frac{1 \text{ m}^2}{10\ 000\ \text{ cm}^2}\right) = 0,8782 \frac{Kgf}{\text{cm}^2}$$

$$\sigma_z = 0,8782 \frac{Kgf}{\text{cm}^2}$$

Cálculo de la deflexión en la superficie de la estructura Δ_0 :

El módulo equivalente \hat{E} se determina a través de la ecuación (66).

$$\hat{E} = E_1 \left[\frac{h_1 + h_2 \sqrt[3]{\frac{E_2}{E_1}} + h_3 \sqrt[3]{\frac{E_3}{E_1}} + \dots + h_{n-1} \sqrt[3]{\frac{E_{n-1}}{E_1}}}{\sum_{i=1}^{n-1} h_i} \right]^3$$

$$\hat{E} = E_{1} \left[\frac{h_{1} + h_{2} \sqrt[3]{\frac{E_{2}}{E_{1}}} + h_{3} \sqrt[3]{\frac{E_{3}}{E_{1}}}}{\sum_{i=1}^{n-1} h_{i}} \right]^{3}$$

$$\hat{E} = E_{1} \left[\frac{h_{1} \sqrt[3]{\frac{E_{1}}{E_{1}}} + h_{2} \sqrt[3]{\frac{E_{2}}{E_{1}}} + h_{3} \sqrt[3]{\frac{E_{3}}{E_{1}}}}{\sum_{i=1}^{n-1} h_{i}} \right]^{3}$$

$$\hat{E} = 1365 \text{MPa} \left[\frac{5 \text{ cm} * \sqrt[3]{\frac{1365 \text{ MPa}}{1365 \text{ MPa}}} + 15 \text{ cm} * \sqrt[3]{\frac{307 \text{ MPa}}{1365 \text{ MPa}}} + 15 \text{ cm} * \sqrt[3]{\frac{223 \text{ MPa}}{1365 \text{ MPa}}} \right]^{3}$$

$$\hat{E} = 354 \text{ MPa}$$

Para cálculo de deflexión en la superficie empleamos la ecuación (65).

$$\Delta_{0} = \frac{2qa(1-\mu^{2})}{E_{n}} \left[\frac{1-(\frac{E_{n}}{\hat{E}})}{\left[1+(\frac{h_{1}+h_{2}+...+h_{n-1}}{a})^{2}(\frac{\hat{E}}{E_{n}})^{2/3}\right]^{1/2}} + \frac{E_{n}}{\hat{E}} \right]$$

$$\Delta_{0} = \frac{2qa(1-\mu^{2})}{E_{n}} \left[\frac{1-(\frac{E_{n}}{\hat{E}})}{\left[1+(\frac{h_{1}+h_{2}+h_{3}}{a})^{2}(\frac{\hat{E}}{E_{n}})^{2/3}\right]^{1/2}} + \frac{E_{n}}{\hat{E}} \right]$$

$$\begin{split} \Delta_{0} &= \frac{2(0,55\text{MRa})(15,27\text{cm})(1-0,39^{2})}{91\text{ MPa}} \Biggl[\frac{1 - (\frac{91\text{ MPa}}{354\text{ MPa}})}{\left[1 + (\frac{35\text{ cm}}{15,27\text{ cm}})^{2} (\frac{354\text{ MPa}}{91\text{ MPa}})^{2/3} \right]^{1/2}} + \frac{91\text{ MPa}}{354\text{ MPa}} \Biggr] \\ \Delta_{0} &= 7,131\text{E}^{-2}\text{cm} \\ \Delta_{0} &= 0,07131 \text{ cm} \\ \Delta_{0} &= 0,7131 \text{ cm} \end{split}$$

Cálculo la deflexión en la capa de subrasante Δ_s :

Para hallar el espesor equivalente empleamos la ecuación (69).

$$h_{e} = 0.8 \sum_{i=1}^{n-1} h_{i} \sqrt[3]{\frac{E_{i}}{E_{n}}}$$

$$h_{e} = 0.8(5cm) \sqrt[3]{\frac{1365MPa}{91MPa}} + 0.8(15cm) \sqrt[3]{\frac{307MPa}{91MPa}} + 0.8(15cm) \sqrt[3]{\frac{223MPa}{91MPa}}$$

$$h_{e} = 44.04 cm$$

Se determina el valor de P a través de la ecuación (68).

$$P = qa^{2}\pi$$

q = 0,55 MPa
a = 15,27 cm
$$\pi = 3,141516$$

0,55 MRa * $\left(\frac{0,1 \text{ kN/cm}^{2}}{1 \text{ MRa}}\right) = 0,055 \text{ kN/cm}^{2}$
P = 0,055 kN/cm² * (15,27 cm)² * 3,141516

P = 40,29 kN

Para cálculo de deflexión en la subrasante empleamos la ecuación (67).

$$\Delta_{\rm S} = \frac{P}{2 \, {\rm E}_n \, {\rm h}_e \sqrt{1 + \frac{a}{{\rm h}_e}}}$$
91 MPa * $\left(\frac{0.1 \, {\rm kN/cm^2}}{1 \, {\rm MPa}}\right) = 9,1 \, {\rm kN/cm^2}$

$$\Delta_{\rm S} = \frac{40,29 \, {\rm kN}}{2 \left(9,1 \frac{{\rm kN}}{{\rm ch}^2}\right) (44,04 \, {\rm cm}) \sqrt{1 + \frac{15,27 \, {\rm cm}}{44,04 \, {\rm cm}}}}$$

$$\Delta_{\rm S} = 4,331 {\rm E}^{-2} \, {\rm cm}$$

$$\Delta_{\rm S} = 0,04331 \, {\rm cm}$$

$$\Delta_{\rm S} = 0,4331 \, {\rm mm}.$$

Cálculo la deflexión de paquete estructural:

$$\Delta_0 - \Delta_s$$

$$\Delta_0 = \Delta_{máx.}$$

 $\Delta_{\text{paq. estruc.}} = \Delta_{\text{máx.}} - \Delta_{\text{s}}$

 $\Delta_{paq. estruc.} = 0,7131 \text{ mm} - 0,4331 \text{ mm}$

 $\Delta_{\text{paq. estruc.}} = 0,2800 \text{ mm.}$

Tabla 38

Сара	Parámetro	Valor servicio	Valor a	Valor admisible		Observación	
Subrasante	Esfuerzo vertical de compresión sobre	0.8782	1 1126	(CRR)	Kg/cm ²	Cumple	Control de ahuellamiento
	la subrasante $\sigma_{z,4}$	0,0702	-,	(-)	8	compre	
Asfáltica	Deformación radial de tracción en la	_	1.088×10^{-4} (CPP)		_	_	Control de fatiga
	base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$	-	1,000,10	(CIXIX)	-	-	Control de l'aliga
Subracanta	Deformación vertical de compresión		7,949x10 ⁻⁴ (Shell)				Control de abuellamiento
Sublasance	sobre la subrasante $\boldsymbol{\mathcal{E}}_{z,4}$	-			-	-	control de andenamiento
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{máx.}$	0,7131	1,1616	(Huang)	mm	Cumple	Control de deflexión
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	0,4331	-		mm	-	-
Paquete estructural	Deflexión en paquete estructural	0.2000					
	$\Delta_{\text{paq.est.}} = \Delta_{\text{máx.}} - \overline{\Delta_{\text{s.}}}$	0,2800	-		IIIM	-	-

Parámetros de verificación de valores de servicio por fórmulas y admisible del modelo estructural. (Progresiva: 24+850 Km)

Nota: Para valores admisibles se empleó las ecuaciones 72, 74, 75 y 76

4.1.4 Determinación de esfuerzos, deformaciones y deflexiones con programa BISAR 3.0

4.1.4.1 Determinación de las deflexiones en eje X (vista lateral).

Mediante la aplicación del programa BISAR 3.0. Londres, 1998. (Shell International Petroleum Company Limited).

Datos:

Eje trasero o equivalente:

8,2 Tn.

Cálculo de carga aplicada (P):

$$\frac{P}{2}$$
, = $\frac{8,2 \text{ Tn}}{2}$ = 4,1 Tn

$$4,1 \text{ Tr} * \left(\frac{9,8067 \text{ kN}}{1 \text{ Tr}}\right) = 40,21 \text{ kN}.$$

Cálculo de la presión de contacto (q):

$$q = 5.6 \text{ Kg/cm}^2$$

$$5,6 \frac{\text{kg}}{\text{cm}^2} * \left(\frac{9,8067 \text{ N}}{1 \text{ kg}}\right) * \left(\frac{10\ 000\ \text{cm}^2}{1\ \text{m}^2}\right) = 549\ 175,20\ \frac{\text{N}}{\text{m}^2}$$

549 175,20
$$\Pr_{a} * \left(\frac{1 \text{ kPa}}{1000 \text{ Pa}}\right) = 549,18 \text{ kPa}$$

Cálculo del área de contacto (Ac): Empleamos la ecuación (14)

$$Ac = \frac{P}{q}$$

$$Ac = \frac{4,100 \text{ kg}}{5,6 \text{ kg/cm}^2}$$
, $Ac = 732,14 \text{ cm}^2$

Cálculo del radio de plato de carga (a): Empleamos la ecuación (16)

$$a = \sqrt{\frac{P}{\pi q}}$$

$$a = \sqrt{\frac{732,14 \text{ cm}^2}{3,141516}} = 15,27 \text{ cm}$$

$$a = 0,1527 \text{ m}$$

Cálculo de módulo de elasticidad (E):

Carpeta asfáltica (E): Progresiva 23+000 a 25+000 km.

El diseño de mezcla asfáltica en caliente MAC-2 por ensayo de estabilidad MARSHALL tiene un contenido óptimo de cemento asfáltico de 5,4%, tal cual se aprecia en la tabla 17, por lo que, para determinar el módulo elasticidad nos basamos a la investigación de Freddy J. Sánchez. Tabla 10. Resultado para grupo Marshall 75 golpes por cada.

En base a los valores, se realizó una interpolación utilizando la ecuación 33.

$$Y = Y_0 + \frac{Y_1 - Y_0}{X_1 - X_0} (X - X_0)$$

$$Y = 230\ 000,00\ \text{Psi} + \frac{190,000.00\ \text{Psi} - 230,000.00\ \text{Psi}}{5,5\% - 5\%}\ (5,4\% - 5\%)$$

Y= 198 000,00 Psi

Convertiendo a MPa

$$198\ 000.00\ \frac{1\ \text{lbf}}{pulg^2} * \left(\frac{1\ \text{N}}{0.2248\ \text{lbf}}\right) * \left(\frac{1\ \text{pulg}}{25,40\ \text{mm}}\right)^2 = 1365,22\ \text{N/mm}^2$$
$$\text{E} = 1,365\ \text{MPa}$$

Para determinar los módulos de elasticidad de diferentes tipos de materiales se utilizó la metodología de Powell, Potter, Mayhew y Nunn, a través de la ecuación 28. Lo que nos permitió basarnos a los resultados de los ensayos de CBR, indicada en la tabla 34.

Base granular (E): Progresiva 23+000 a 25+000 km.

CBR al 95% = 87%

$$E = 17,6 \ CBR^{0,64} \ (MPa)$$

$$E = 17,6 (87\%)^{0,64} = 307 MPa$$

Sub base granular (E): Progresiva 23+000 a 25+000 km.

CBR al 95% = 53% E = 17,6 $(53\%)^{0,64}$ = 223 MPa

Subrasante (E)

Primer punto de estudio: Progresiva 23+275 km.

CBR al 95% = 12%

 $E = 17,6 (12\%)^{0,64} = 86 MPa$

Segundo punto de estudio: Progresiva 23+750 km.

CBR al 95% = 14%

 $E = 17,6 (14\%)^{0,64} = 95 MPa$

Tercer punto de estudio: Progresiva 24+475 km.

CBR al 95% = 10%

$$E = 17,6 (10\%)^{0,64} = 77 MPa$$

Cuarto punto de estudio: Progresiva 24+850 km.

CBR al 95% = 13%

 $E = 17,6 (13\%)^{0,64} = 91 \text{ MPa}$

El coeficiente de poisson empleamos de acuerdo a los rangos de diferentes tipos de materiales, la cual se aprecia en la tabla 8, para progresiva 23+000 a 25+000 km.

Carpeta asfáltica (µ):

 $\mu = 0,35$

Base granular (μ):

 $\mu = 0,37$

Subbase granular (μ):

 $\mu = 0,40$

Subrasante (μ)

 $\mu = 0,45$

Primer punto de estudio: Progresiva 23+275 km, eje X (vista lateral)

Figura 88. Esquema del modelo estructural en eje X. (Progresiva 23+275 km – Vista lateral)

📇 Proje	BISAR 3.0 ect Edit () - Bitumen St Copy From Res	t <mark>ress Analysis</mark> ults Window H	in Roads Help						
PRO	GRESIVA	23+275 KM E	JE X				×			
N	umber of S	Systems (1-10)	1 🖨							
_	/ 1 _									
System Description: PROGRESIVA 23+275 KM EJE X										
	L(oads	Layers	Po	sitions	_				
ш	Use Stan	dard Dual Wh	eel? 🗌			<u>S</u> ave	<u>R</u> etrieve			
	Mode of	Load: 1 - Stre	ess and Load	<u> </u>	No of C	ircular Loads (1-10): 1			
I	Load Number	Vertical Stress (kPa)	Vertical Load (kN)	X Coordinate (m)	Y Coordinate (m)	Horizontal Stress (kPa)	Shear Direction (degr.)			
	1	549,180	40,210	0,0000	0,0000	0,000	0,0			

Figura 89. Información de entrada de la presión de contacto y carga. (Progresiva 23+275 km – Eje X)

🛗 BISAR 3.0 - Bitu	ımen Stre	ss Analysis in	Roads							
Project Edit Copy Fro	om Results	; Window Help)							
PROGRESIVA 23+27	75 KM EJE	X				×				
Number of System	s (1-10):	1 🚔								
		•								
System Description		nESIYA Z3+ZI		_						
Loads	<u> </u>	Layers	Positio	ns						
Full Friction Betw	ween Laye	rs? 🔽			Save <u>R</u> etrieve					
				No	of Layers (1-10): 4 🚔					
	Layer	Thickness ()	Modulus of	Poisson's						
	Number	(III)	(MPa)	nauu						
	1	0,050	1,36E+03	0,35						
	2	0,150	3,07E+02	0,37						
	3	0,150	2,23E+02	0,40						
	4		8,60E+01	0,40						

Figura 90. Información de las capas que conforman la estructura y sus características. (Progresiva 23+275 km – Eje X)

💾 BISAR 3.0 - Bit	umen Stress Ana	lysis in Roads	;								
Project Edit Copy From Results Window Help											
PROGRESIVA 23+2	75 KM EJE X+SR					×					
Number of Systems (1-10): 1											
Sustem Description: DDOCDECIVA 22,275 KM EVE V. CD											
Loade	Introdite Step		Positions								
Loads	Laye		1 Osicions		Save Retrieve						
Select Positi	ons for Standard I)ual Wheel									
			Noo	Position E	intries (1-10): 🔰 🍯						
Positi	on X ber Coordinate	Y Coordinate	Z (depth) Coordinate	Layer No							
	(m)	(m)	(m)								
1	0,0000	0,0000	0,0000	1							
2	0,0000	0,0000	0,0500	1	Select Layer						
3	0,0000	0,0000	0,2000	2	Select Layer						
4	0,0000	0,0000	0,3500	3	(Select Layer)						
5	0,0000	0,0000	0,3501	4							
6	0,0000	0,0000	0,6500	4	_						
	0,0000	0,0000	1,0000	4							
				_							

Figura 91. Información de entrada, posiciones. (Progresiva 23+275 km – Eje X)

BISAR 3.0 - Block Report

PROGRESIVA 23+275 KM EJE X+SR

System 1: PROGRESIVA 23+275 KM EJE X +SR

Structure				Loads								
Layer Number	Thidaes (m)	Mobulus of Elasticity (MPa)	Paissan's Ratio	Lod Norder	Ver Load (KN)	tical Stress (ACPa)	Harizanti Losd (KN)	L(Shear) Stress (MPa)	Radius (m)	X-Coard (m)	Y-Coard (m)	Shear Angle (Degrees)
1 2 3 4	0,050 0,150 0,150	1,360E+03 3,070E+02 2,230E+02 8,600E+01	0,35 0,37 0,40 0,45	1	4,021E+01	5,492E-01	0,000 E+ 00	0,000 E+ 00	1,527E-01	0,000 E+ 00	0,000 E+ 00	0,000 E+ 00

Position	Layer	X-Coard	Y-Coard	Depth	xx	Stresses YY	II	xx	Strains YY	ZZ	ux	Displacements UY	uz
Nimber	Number	¢n)	¢υ)	(tu)	(MIRA)	(ME#)	(AILA)	pustrain.	pustraiin.	pustrain.	(tav)	(tav)	(tar)
1	1	0,000 E+ 00	0,000 E+ 00	0,000 E+ 00	-1,193E+00	-1,193E+00	-5,492E-01	-4,291E+02	-4,291E+02	2,105E+02	0,000E+00	0,000 E+ 00	7,078E+02
ź	1	0,000 E+ 00	0,000 E+ 00	5,000 E- 02	1,318E-01	1,318E-01	-5,054E-01	1,931E+02	1,931E+02	-4,394E+02	0,000 E+ 00	0,000 E+ 00	7,015E+02
3	ź	0,000 E +00	0,000 E+ 00	2,000E-01	7,278E-02	7,278E-02	-1,978E-01	3,878E+02	3,878 E+ 02	-8,199E+02	0,000 E+ 00	0,000 E+ 00	5,476E+02
4	3	0,000 E +00	0,000 E+ 00	3,500E-01	8,759E-02	8,759E-02	-7,389E-02	3,682E+02	3,682 E +02	-6,456E+02	0,000 E+ 00	0,000 E+ 00	4,407E+02
5	4	0,000 E +00	0,000 E+ 00	3,501E-01	-2,879E-03	-2,879E-03	-7,386E-02	3,681E+02	3,68 1E+ 02	-8,287E+02	0,000 E+ 00	0,000E+00	4,406E+02
6	4	0,000 E +00	0,000 E+ 00	6,500E-01	-7,972E-04	-7,972E-04	-2,936E-02	1,485E+02	1,485E+02	-3,330 E+ 02	0,000E+00	0,000E+00	2,835 E +02
7	4	0,000 E+ 00	0,000 E+ 00	1,000E+00	-2,378E-04	-2,378E-04	-1,463E-02	7,504E+01	7,50 4E+01	-1,676E+02	0,000 E+ 00	0,000 E+ 00	2,010E+02

Figura 92. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva 23+275 km – Eje X).

Conversión de resultado del software Bisar 3.0: Esfuerzo vertical de compresión sobre la subrasante $\sigma_{z,4}$ de MPa a Kg/cm².

$$-0.07389 \text{ MPa} * \left(\frac{1000 \text{ kPa}}{1 \text{ MRa}}\right) * \left(\frac{1000 \text{ Pa}}{1 \text{ kPa}}\right) = -73890.00 \text{ Pa}$$

$$-73890.00 \frac{N}{m^2} * \left(\frac{1 \text{ Kgf}}{9.8067 \text{ N}}\right) * \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 =$$

$$-73890.00 \frac{N}{m^2} * \left(\frac{1 \text{ kgf}}{9.8067 \text{ N}}\right) * \left(\frac{1 \text{ m}^2}{10000 \text{ cm}^2}\right) = -0.7535 \frac{Kgf}{\text{ cm}^2}$$

Conversión de resultado del software Bisar 3.0: Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$ y deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4.}$

$$\varepsilon_{r,1} = \frac{\varepsilon_{r,1} \,\mu strain}{10^6}$$

$$\varepsilon_{r,1} = \frac{1,931x10^2}{10^6}, \qquad \varepsilon_{r,1} = 1,931 \,x10^{-4}$$

$$\varepsilon_{z,4} = \frac{-6,456x10^2}{10^6}, \qquad \varepsilon_{r,4} = -6,456 \,x10^{-4}$$

Conversión de resultado del software Bisar 3.0: Deflexión en la superficie $\Delta_0 = \Delta_{máx.}$ de μm a mm.

$$\Delta_{0} = \Delta_{\max} = .707,8 \,\mu\text{m} * \left(\frac{1 \,\text{mm}}{1000 \,\mu\text{m}}\right) = 0,7078 \,\text{mm}$$

$$\Delta_{s} = -440,7 \,\mu\text{m} * \left(\frac{1 \,\text{mm}}{1000 \,\mu\text{m}}\right) = 0,4407 \,\text{mm}$$

Tabla 39

Сара	Parámetro	Valor servicio	Valor admisible		Unidades	Observación	
Subrasante	Esfuerzo vertical de compresión sobre	0.7535	1.0107	(CRR)	Kg/cm ²	Cumple	Control de ahuellamiento
Sucrusuite	la subrasante $\sigma_{z,4}$	0,7000	-,		8	Cumpie	
Asfáltica	Deformación radial de tracción en la	1.931×10^{-4}	1 088x10 ⁻⁴	(CPP)		No cumple	Control de fatiga
	base de la capa asfáltica $\boldsymbol{\varepsilon}_{\mathrm{r},1}$	1,951X10	1,000,10	(CIUC)	_	No eulipie	Control de latiga
Subracanta	Deformación vertical de compresión	6 456x 10 ⁻⁴	7,949x10 ⁻⁴ (Shell)		_	Cumple	Control de ahuellamiento
Sublasante	sobre la subrasante $\boldsymbol{\varepsilon}_{z,4}$	0,430x10			-		
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{max.}$	0,7078	1,1616	(Huang)	mm	Cumple	Control de deflexión
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	0,4407	-		mm	-	-
Paquete estructural	Deflexión en paquete estructural	0.2671					
	$\Delta_{\text{pag.est.}} = \Delta_{\text{máx.}} - \Delta_{\text{s.}}$	0,2071	-		mm	-	-

Parámetros de verificación de valores de servicio por software y admisible del modelo estructural. (Progresiva 23+275 km – Eje X)

Nota: Para valores admisibles se empleó las ecuaciones 72, 74, 75 y 76
Segundo punto de estudio: Progresiva 23+750 km, eje X (Vista Lateral)

Figura 93. Esquema del modelo estructural en eje X. (Progresiva: 23+750 Km- Vista lateral)

<u> </u>	BISAR 3.0) - Bitumen S	tress Analysis	s in Roads										
Proj	ject Edit	Copy From Res	ults Window	Help										
PRO	OGRESIVA	23+750 KM E	JE X				×							
N	lumber of S	Systems (1-10)	1											
s	System Description: PROGRESIVA 23+750 KM EJE X													
		oads	Layers	Po	sitions									
	Use Stan	dard Dual Wh	eel? 🗌			<u>S</u> ave	<u>R</u> etrieve							
Mode of Load: 1 - Stress and Load No of Circular Loads (1-10): 1														
	Load Number	Vertical Stress (kPa)	Vertical Load (kN)	X Coordinate (m)	Y Coordinate (m)	Horizontal Stress (kPa)	Shear Direction (degr.)							
	Load Number 1	Vertical Stress (kPa) 549,180	Vertical Load (kN) 40,210	Coordinate (m)	Y Coordinate (m) 0,0000	Horizontal Stress (kPa) 0,000	Shear Direction (degr.) 0,0							

Figura 94. Información de entrada de la presión de contacto y carga. (Progresiva: 23+750 Km – Eje X)

🛗 BISAR 3.0 - Bit	umen Stre	ess Analysis in	Roads									
Project Edit Copy Fr	om Results	s Window Help)									
PROGRESIVA 23+7	50 KM EJE	Х			×							
Number of Systems (1-10): 1												
System Descriptio	n: PBOGI	3ESIVA 23+75	U KM EJE X									
Loads		Lavers	Positio	20								
Full Friction Bet	ween Lave	rs? 🔽	1 001101		Save Retrieve							
T di Tricton Deci	HCCH Laye	13: 14		No	of Lauers (1,10): 4							
		Thisland	Madalas of	Deixeeria								
	Layer Number	Thickness (m)	Modulus of Elasticity	Poisson's Ratio								
			(MPa)									
	1	0,050	1,36E+03	0,35								
	2	0,150	3,07E+02	0,37								
	3	0,150	2,23E+02	0,40								
	4		9,50E+01	0,45								

Figura 95. Información de las capas que conforman la estructura y sus características. (Progresiva: 23+750 Km – Eje X)

🛗 BISAR 3.	0 - Bitume	n Stress Anal	ysis in Roads										
Project Edit	Copy From	Results Windo	w Help										
PROGRESIVA	23+750	KM EJE X+SR					×						
Number of	Systems (1	<mark>-10):</mark> 1 🖨											
System De	System Description: PROGRESIVA 23+750 KM EJE X+SR												
	Loads	Layer	s /	Positions									
	, in the second s				S	ave <u>R</u> et	rieve						
Select	Positions	for Standard D	ual Wheel	Νοο	f Position En	tries (1-10)	7						
	Position	×	Y	Z (depth)	Lauer								
	Number	Coordinate	Coordinate	Coordinate	No								
		(m)	(m)	(m)									
	1	0,0000	0,0000	0,0000	1	Calcable avera							
	2	0,0000	0,0000	0,0500	<u> </u>	Select Layer							
	A	0,0000	0,0000	0,2000	2	Select Layer							
	5	0,0000	0,0000	0,3500		Jelect Edyer							
	6	0,0000	0,0000	0,6500	4								
	7	0,0000	0,0000	1,0000	4								
		1				1							
	_	_	_	_	_	_							

Figura 96. Información de entrada, posiciones. (Progresiva: 23+750 Km – Eje X)

PROGRESIVA 23+750 KM EJE X+SR

System 1: PROGRESIVA 23+750 KM EJE X+SR

Structure	•			Loads								
Layer Number	Thidnes (n)	Mobulus af Elasticity (MPa)	Paissan's Raitio	Load Nimber	Ver Load (kN)	tical Stress (//IPa)	Harizardə Loəd (kN)	l (Shear) Stress (AIPa)	Ratius (m)	X-Coard (m)	Y-Coard (m)	Shear Angle (Degrees)
1 2 3	0,050 0,150 0,150	1,360E+03 3,070E+02 2,230E+02	0,35 0,37 0,40	1	4,021E+01	5,492E-01	0,000 E+ 00	0,000 E+ 00	1,527E-01	0,000 E+ 00	0,000 E+ 00	0,000 E+ 00

						Stresses			Strains			Displacements	
Position	Layer	X-Courd	Y-Coard	Depth	xx	YY	22	xx	YY	ZZ	ux	UY	uz
Nmber	Number	¢n)	(m)	(m)	(ATPa)	(ስዊa)	(AB4)	pustaraiin.	pustrain.	pustrain.	(m)	(umi)	(m)
1	1	0,000 E+ 00	0,000E+00	0,000 E+ 00	-1,178E+00	-1,178E+00	-5,492E-01	-4,217E+02	-4,217E+02	2,025E+02	0,000E+00	0,000E+00	6,773E+02
2	1	0,000 E+ 00	0,000 E+ 00	5,000 E -02	1,375E-01	1,375E-01	-5,058E-01	1,959E+02	1,959E+02	-4,427E+02	0,000 E+ 00	0,000 E+ 00	6,707E+02
3	ź	0,000 E+ 00	0,000 E+ 00	2,000E-01	6,975E-02	6,975E-02	-2,008E-01	3,851E+02	3,85 1E+ 02	-8,221E+02	0,000E+00	0,000 E+ 00	5,163E+02
4	3	0,000 E+ 00	0,000 E+ 00	3,500 E-01	7,818E-02	7,818E-02	-7,747E-02	3,493E+02	3, 493E+ 02	-6,279E+02	0,000E+00	0,000 E+ 00	4,099E+02
5	4	0,000 E+ 00	0,000 E+ 00	3,501E-01	-3,051E-03	-3,051E-03	-7,744E-02	3,492E+02	3,492E+02	-7,863E+02	0,000E+00	0,000 E+ 00	4,098E+02
6	4	0,000 E+ 00	0,000 E+ 00	6,500E-01	-7,580E-04	-7,580E-04	-3,042E-02	1,397E+02	1,397E+02	-3,131E+02	0,000E+00	0,000E+00	2,613E+02
7	4	0,000 E+ 00	0,000 E+ 00	1,000E+00	-2,094E-04	-2,094E-04	-1,500E-02	6,986E+01	6,986E+01	-1,559E+02	0,000 E+ 00	0,000 E+ 00	1,841E+02

Figura 97. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva: 23+750 Km – Eje X)

$$-0.07747 \text{ MPa} * \left(\frac{1000 \text{ kPa}}{1 \text{ MRa}}\right) * \left(\frac{1000 \text{ Pa}}{1 \text{ kPa}}\right) = -77 470.00 \text{ Pa}$$

$$-77 470.00 \frac{N}{m^2} * \left(\frac{1 \text{ Kgf}}{9.8067 \text{ N}}\right) * \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 =$$

$$-77 470.00 \frac{N}{m^2} * \left(\frac{1 \text{ kgf}}{9.8067 \text{ N}}\right) * \left(\frac{1 \text{ m}^2}{10 000 \text{ cm}^2}\right) = -0.7899 \frac{Kgf}{\text{cm}^2}$$

Conversión de resultado del software Bisar 3.0: Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$ y deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4.}$

$$\varepsilon_{r,1} = \frac{\varepsilon_{r,1} \,\mu strain}{10^6}$$

$$\varepsilon_{r,1} = \frac{1,959x10^2}{10^6}, \qquad \varepsilon_{r,1} = 1,959 \, x10^{-4}$$

$$\varepsilon_{z,4} = \frac{-6,279x10^2}{10^6}, \qquad \varepsilon_{r,4} = -6,279x10^{-4}$$

$$677,3\mu m = \left(\frac{1 \text{ mm}}{1000 \ \mu m}\right) = 0,6773 \text{ mm}$$
$$409,9\mu m = \left(\frac{1 \text{ mm}}{1000 \ \mu m}\right) = 0,4099 \text{ mm}$$

Сара	Parámetro	Valor Servicio Valor Admisible		Unidades		Observación		
Subrasante	Esfuerzo vertical de compresión	0,7899	1,2160	(CRR)	Kg/cm ²	Cumple	Control de ahuellamiento	
Asfáltica	sobre la subrasante $\sigma_{z,4}$ Deformación radial de tracción en la base de la capa asfáltica $\varepsilon_{r,1}$	1,959x10 ⁻⁴	1,088x10	-4 (CRR)	-	No cumple	Control de fatiga	
Subrasante	Deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4}$	6,279x10 ⁻⁴	7,949x10	-4 (Shell)	-	Cumple	Control de ahuellamiento	
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{máx.}$	0,6773	1,1616	(Huang)	mm	Cumple	Control de deflexión	
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	0,4099	-		mm	-	-	
Paquete estructural	Deflexión en paquete estructural $\Delta_{paq.est.} = \Delta_{máx.} - \Delta_{s.}$	0,2674	-		mm	-	-	

Parámetros de verificación de valores de servicio por software y admisible del modelo estructural. (Progresiva 23+750 Km – Eje X)

Tercer punto de estudio: Progresiva 24+475 km, eje X (Vista Lateral)

Figura 98. Esquema del modelo estructural en eje X. (Progresiva: 24+475 km – Vista lateral)

<u></u>	BISAR 3.() - Bitumen St	ress Analysis	s in Roads										
Proj	ect Edit	Copy From Res	ults Window	Help										
PRO	PROGRESIVA 24+475 KM EJE X													
N	Number of Systems (1-10): 1													
_														
S	ystem Des	cription: PRO	GRESIVA 24	+475 KM EJE X	4									
١.	L	oads	Layers	Po	sitions	_								
н	Use Star	ndard Dual Whe	eel? 🗌			<u>S</u> ave	<u>R</u> etrieve							
н	Mode of	Load: 1 - Stre	ess and Load	•	No of Ci	ircular Loads (1-10): 1 🚔							
н	Load Number	Vertical Stress	Vertical Load	X Coordinate	Y Coordinate	Horizontal Stress	Shear Direction							
		(kPa)	(kN)	(m)	(m)	(kPa)	(degr.)							
	1	549,180	40,210	0,0000	0,0000	0,000	0,0							
Ш														

Figura 99. Información de entrada de la presión de contacto y carga. (Progresiva 24+475 Km – Eje X)

🛗 BISAR 3.0 - B	itumen Stre	ss Analysis in	Roads		
Project Edit Copy	From Results	; Window Help)		
PROGRESIVA 24+	475 KM EJE	X			×
Number of Syste	ems (1-10):	1 🚔			
_/ 1 \					
System Descrip	tion: PROGI	RESIVA 24+47	5 KM EJE 🗶		
Loads		Layers	Positio	ns	
Full Friction B	etween Laye	rs? 🔽			<u>Save</u> <u>R</u> etrieve
				No	of Layers (1-10): 🚺 📥
	Layer Number	Thickness (m)	Modulus of Elasticity (MPa)	Poisson's Ratio	
	1	0,050	1,36E+03	0,35	
	2	0,150	3,07E+02	0,37	
	3	0,150	2,23E+02	0,40	
			7,702+01	0,45	
	_	_	_	_	

Figura 100. Información de las capas que conforman la estructura y sus características. (Progresiva 24+475 Km – Eje X)

🛗 BISAR 3	.0 - Bitume	n Stress Anal	ysis in Roads									
Project Edit	Copy From	Results Window	w Help									
PROGRESIV	A 24+475 K	(m eje X + sr					×					
Number of Systems (1-10): 1 System Description: PROCRESIVA 24+475 KM EVEX + SR												
	Loads	Layer	s /	Positions								
Selec	ct Positions	for Standard D	ual Wheel	No o	F Position Er	ave <u>R</u> et atries (1-10):	rieve 7 🚖					
	Position Number	X Coordinate (m)	Y Coordinate (m)	Z (depth) Coordinate (m)	Layer No							
	1	0,0000	0,0000	0,0000	1							
	2	0,0000	0,0000	0,0500	1	Select Layer						
	3	0,0000	0,0000	0,2000	2	Select Layer						
	4	0,0000	0,0000	0,3500	3	Select Layer						
	5	0,0000	0,0000	0,3501	4							
	6	0,0000	0,0000	0,6500	4							
	7	0,0000	0,0000	1,0000	4							

Figura 101. Información de entrada, posiciones. (Progresiva 24+475 Km – Eje X)

PROGRESIVA 24+475 KM EJE X + SR

System 1: PROGRESIVA 24+475 KM EJE X + SR

Structure				Loads								
Layer Number	Daidmess (m)	Mobulus of Elasticity (MPa)	Paissan's Ratio	Load Number	Ver Load (kN)	tical Stress (MPa)	Harizanda Load (KN)	l (Shear) Stress (AIPa)	Radius (m)	X- Coard (m)	Y-Coard (m)	Shear Angle (Degrees)
1 2 3 4	0,050 0,150 0,150	1,360E+03 3,070E+02 2,230E+02 7,200E+01	0,35 0,37 0,40 0.45	1	4,021E+01	5,492E-01	0,000E+00	0,000E+00	1,527E-01	0,000 E+ 00	0,000 E +00	0,000 E+ 00

Positian Number	Layer Number	X-Coard áni	Y-Coard (m)	Depth Ծոմ	XX (MPa)	Stresses YY (MPa)	II (ARa)	XX µostrain	Strains YY µstrain	ZZ µustraiin	UX (um)	Nisplacements UY (con)	ՄΖ (տո)
<u> </u>	1	0.0007100	0.0007:00	0.0007100	1 0115.00	1 0115:00	5 4005 01	4 3745108	4 3757100	* 1457.0*	0.0007.00	0.0007.00	1 4415-00
1 -	1	0,00000+00	0,00007400	0,0001400	-1,2110+00	-1,2110+00	-2,4322-01	-4,3746402	-4/3/97405	5,1301405	0,00007400	0,0007400	1,4410405
2	1	0,000 E+ 00	0,000 E+ 00	5,000E-02	1,253E-01	1,253E-01	-5,048E-01	1,898E+02	1,898E+02	-4,357E+02	0,000E+00	0,000 E+ 00	7,382 E+ 02
3	ź	0,000 E+ 00	0,000 E+ 00	2,000E-01	7,622E-02	7,622E-02	-1,947E-01	3,910E+02	3,910E+02	-8,178E+02	0,000E+00	0,000 E+ 00	5,848E+02
4	3	0,000 E+ 00	0,000E+00	3,500E-01	9,810E-02	9,810E-02	-6,999E-02	3,895E+02	3,895E+02	-6,658E+02	0,000E+00	0,000E+00	4,772E+02
5	4	0,000 E+ 00	0,000E+00	3,501E-01	-2,734E-03	-2,734E-03	-6,996E-02	3,893E+02	3,893E+02	-8,766E+02	0,000E+00	0,000E+00	4,772E+02
6	4	0,000 E+ 00	0,000E+00	6,500E-01	-8,450E-04	-8,450E-04	-2,818E-02	1,587E+02	1,587E+02	-3,561E+02	0,000E+00	0,000 E+ 00	3,103E+02
7	4	0,000 E+ 00	0,000 E+ 00	1,000E+00	-2,705E-04	-2,705E-04	-1,422E-02	8,116E+01	8,116E+01	-1,815E+02	0,000E+00	0,000 E+ 00	2,215E+02

Figura 102. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva 24+475 Km – Eje X)

$$-0.06999 \text{ MPa} * \left(\frac{1000 \text{ kPa}}{1 \text{ MRa}}\right) * \left(\frac{1000 \text{ Pa}}{1 \text{ kPa}}\right) = -69990.00 \text{ Pa}$$

$$-69990.00 \frac{N}{m^2} * \left(\frac{1 \text{ Kgf}}{9.8067 \text{ N}}\right) * \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 =$$

$$-69990.00 \frac{N}{m^2} * \left(\frac{1 \text{ kgf}}{9.8067 \text{ N}}\right) * \left(\frac{1 \text{ m}^2}{10 \text{ 000 cm}^2}\right) = -0.7137 \frac{Kgf}{\text{ cm}^2}$$

Conversión de resultado del software Bisar 3.0: Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$ y deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4.}$

$$\varepsilon_{r,1} = \frac{\varepsilon_{r,1} \text{ } \mu \text{ } strain}{10^6}$$

$$\varepsilon_{r,1} = \frac{1,898 \times 10^2}{10^6}, \qquad \varepsilon_{r,1} = 1,898 \times 10^{-4}$$

$$\varepsilon_{z,4} = \frac{-6,658 \times 10^2}{10^6}, \qquad \varepsilon_{r,4} = -6,658 \times 10^{-4}$$

744,1µm =
$$\left(\frac{1 \text{ mm}}{1000 \text{ µm}}\right)$$
 = 0,7441 mm
477,2µm = $\left(\frac{1 \text{ mm}}{1000 \text{ µm}}\right)$ = 0,4772 mm

Сара	Parámetro	Valor servicio	Valor	admisible	Unidades		Observación
Subrasante	Esfuerzo vertical de compresión sobre la subrasante $\sigma_{a,4}$	0,7137	0,8121	(CRR)	Kg/cm ²	Cumple	Control de ahuellamiento
Asfáltica	Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,l}$	1,898x10 ⁻⁴	1,088x1() ⁻⁴ (CRR)	-	No cumple	Control de fatiga
Subrasante	Deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4}$	6,658x10 ⁻⁴	7,949x10) ⁻⁴ (Shell)	-	Cumple	Control de ahuellamiento
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{máx.}$	0,7441	1,1616	(Huang)	mm	Cumple	Control de deflexión
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	0,4772	-		mm	-	-
Paquete estructural	Deflexión en paquete estructural $\Delta_{paq.est.} = \Delta_{máx.} - \Delta_{s.}$	0,2669	-		mm	-	-

Parámetros de verificación de valores de servicio por software y admisible del modelo estructural. (Progresiva 24+475 Km – Eje X)

Cuarto punto de estudio: Progresiva 24+850 km, eje X (Vista Lateral)

Figura 103. Esquema del modelo estructural en eje X. (Progresiva 24+850 Km – Vista lateral)

Figura 104. Información de entrada de la presión de contacto y carga. (Progresiva 24+850 Km – Eje X)

Project Edit Copy From Results Window Help	
PROGRESIVA 24+850 KM EJE X	×
Number of Systems (1-10): 1 🚔	
System Description: PROGRESIVA 24+850 KM EJE X	
Loads Layers Positions	
Full Friction Between Layers? Image: Constraint of the second s	trieve
No of Layers (1-10):	4 🚔
Layer Thickness Modulus of Poisson's Number (m) Elasticity Ratio	
(MPa)	
1 0,050 1,36E+03 0,35	
2 0,150 3,07E+02 0,37	
3 0,150 2,23E+02 0,40	
4 3,102+01 0,43	

Figura 105. Información de las capas que conforman la estructura y sus características (Progresiva 24+850 Km – Eje X)

🛗 BISAR 3	.0 - Bitume	n Stress Anal	ysis in Roads								
Project Edit	Copy From	Results Windo	w Help								
PROGRESIV	A 24+850 K	(m eje x + sr					×				
Number of 1 System Do	Number of Systems (1-10): 1 1 System Description: PROGRESIVA 24+850 KM EJE X + SR										
	Loads	Laver	\$	Positions							
Selec	t Positions	for Standard D	ual Wheel	No o	f Position Er	<u>Save R</u> etri ntries (1-10):	ieve 7 🌲				
	Position Number	X Coordinate (m)	Y Coordinate (m)	Z (depth) Coordinate (m)	Layer No						
	1	0,0000	0,0000	0,0000	1	1					
	2	0,0000	0,0000	0,0500	1	Select Layer					
	3	0,0000	0,0000	0,2000	2	Select Layer					
	4	0,0000	0,0000	0,3500	3	Select Layer					
	5	0,0000	0,0000	0,3501	4						
	6	0,0000	0,0000	0,6500	4	_					
	7 1	0 00001	0.00001	1,0000	4		_				
	· · · ·	0,0000	-,								

Figura 106. Información de entrada, posiciones. (Progresiva 24+850 Km – Eje X)

PROGRESIVA 24+850 KM EJE X + SR

System 1: PROGRESIVA 24+850 KM EJE X + SR

Stru	otu	r 0
Suu	uιu	

Loads

		Mobilits of			Ve	rtical.	Kaizada	l (Shear)				Shear
Layer	Thickness	Elasticity	Paissan's	Load	Load	Stress	Load	Stress	Radius	X-Coard	Y-Courd	Angle
Nimber	φŋ	(vira)	Katho	Number	QK14)	(vira)	QKN)	(vira)	(m)	(m)	(m)	(Degrees)
ı	0,050	1,360E+03	0,35	1	4,021E+01	5,492E-01	0,000 E+ 00	0,000 E+ 00	1,527E-01	0,000 E+ 00	0,000 E+ 00	0,000 E+ 00
ź	0,150	3,070E+02	0,37									
3	0,150	2,230 E+ 02	0,40									
4		9,100E+01	0,45									

						Stresses			Strains			Hisplacements	
Position.	Layer	X-Coard	Y-Courd	Depth	xx	YY	ZZ	xx	YY	22	ux	- UX	uz
Number	Nimber	(m)	¢π)	(m)	(#BA)	(ATPA)	(ATPa)	µstrain.	pustrain.	pstrain.	(ian)	(jan)	(ian)
1	1	0,000 E+ 00	0,000 E+ 00	0,000 E+ 00	-1,185E+00	-1,185E+00	-5,492E-01	-4,249E+02	-4,249E+02	2,059 E+ 02	0,000 E+ 00	0,000 E+ 00	6,902 E+ 02
2	1	0,000 E+ 00	0,000E+00	5,000E-02	1,351E-01	1,351E-01	-5,056E-01	1,947E+02	1,947E+02	-4,413E+02	0,000 E+ 00	0,000 E+ 00	6,838E+02
3	ź	0,000 E+ 00	0,000E+00	2,000E-01	7,105E-02	7,105E-02	-1,995E-01	3,863E+02	3,863E+02	-8,211E+02	0,000E+00	0,000 E+ 00	5,295E+02
4	3	0,000 E+ 00	0,000E+00	3,500E-01	8,224E-02	8,224E-02	-7,592E-02	3,575E+02	3,575E+02	-6,355E+02	0,000 E+ 00	0,000 E+ 00	4,229E+02
5	4	0,000 E+ 00	0,000E+00	3,501E-01	-2,972E-03	-2,972E-03	-7,589E-02	3,573E+02	3,573E+02	-8,045E+02	0,000E+00	0,000E+00	4,229E+02
6	4	0,000 E+ 00	0,000E+00	6,500E-01	-7,745E-04	-7,745E-04	-2,996E-02	1,435E+02	1,435E+02	-3,216E+02	0,000E+00	0,000 E+ 00	2,707E+02
7	4	0,000 E+ 00	0,000 E+ 00	1,000E+00	-2,216E-04	-2,216E-04	-1,484E-02	7,206E+01	7,206E+01	-1,609E+02	0,000 E+ 00	0,000 E+ 00	1,912E+02

$r_{10}u_{10}$, Resultations (reporte de santia) del programa DISAR 5.0. (riogresiva 24+630 Riff – Ele.	Figura	107.	Resultados	(reporte de	salida) de	el programa	BISAR 3.0.	(Progresiva	24+850 Km -	- Eie X
--	--------	------	------------	-------------	------------	-------------	------------	-------------	-------------	---------

$$-0.07592 \text{ MPa} * \left(\frac{1000 \text{ kPa}}{1 \text{ MRa}}\right) * \left(\frac{1000 \text{ Pa}}{1 \text{ kPa}}\right) = -75920.00 \text{ Pa}$$

$$-75920.00 \frac{N}{m^2} * \left(\frac{1 \text{ Kgf}}{9.8067 \text{ N}}\right) * \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 =$$

$$-75920.00 \frac{N}{m^2} * \left(\frac{1 \text{ kgf}}{9.8067 \text{ N}}\right) * \left(\frac{1 \text{ m}^2}{10 000 \text{ cm}^2}\right) = -0.7742 \frac{Kgf}{\text{ cm}^2}$$

Conversión de resultado del software Bisar 3.0: Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$ y deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4.}$

$$\varepsilon_{r,1} = \frac{\varepsilon_{r,1} \text{ } \mu \text{ } strain}{10^6}$$

$$\varepsilon_{r,1} = \frac{1,947 \times 10^2}{10^6}, \qquad \varepsilon_{r,1} = 1,947 \times 10^{-4}$$

$$\varepsilon_{z,4} = \frac{-6,355 \times 10^2}{10^6}, \qquad \varepsilon_{r,4} = -6,355 \times 10^{-4}$$

$$690,2\mu m = \left(\frac{1 \text{ mm}}{1000 \ \mu m}\right) = 0,6902 \text{ mm}$$
$$422,9\mu m = \left(\frac{1 \text{ mm}}{1000 \ \mu m}\right) = 0,4229 \text{ mm}$$

Сара	Parámetro	Valor servicio	Valor	admisible	Unidades		Observación
Subrasante	Esfuerzo vertical de compresión sobre	0 7742	1 1126	(CRR)	Kg/cm ²	Cumple	Control de ahuellamiento
Sublubulite	la subrasante $\sigma_{z,4}$	0,7712	1,1120	(end)	119,0111	Campie	
Asfáltica	Deformación radial de tracción en la	1 947x10 ⁻⁴	1.088×10^{-1}	-4 (CRR)	_	No cumple	Control de fatiga
Tistutticu	base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$	1,917,810	1,000410	(entry		rto cumpie	control de lungu
Subracanta	Deformación vertical de compresión	6 355 x 10 ⁻⁴	7.040×10^{-4} (Shall)			Cumple	Control de abuellamiento
Subrasante	sobre la subrasante $\boldsymbol{\mathcal{E}}_{z,4}$	0,333310	7,949810	(Shen)	-	Cumple	Control de andenannento
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{max.}$	0,6902	1,1616	(Huang)	mm	Cumple	Control de deflexión
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	0,4229		-	mm	-	-
Paquete estructural	Deflexión en paquete estructural	0 2673		_	mm	_	_
i aquete esti detarai	$\Delta_{\text{pag.est.}} = \Delta_{\text{máx.}} - \Delta_{\text{s.}}$	0,2075					

Parámetros de verificación de valores de servicio por software y admisible del modelo estructural. (Progresiva 24+850 Km – Eje X)

a. Comparación de los resultados obtenidos por el método CONREVIAL y SHELL.

Primer punto de estudio: Progresiva 23+275 Km, Eje X (vista lateral)

Tabla 43

Cana	Parámetro	CONREVIAI	SF	Unidad	
Capa	T at anicti 0	CONKEVIAL	Fórmula	Bisar 3.0	Onidad
Subrasante	Esfuerzo vertical de compresión sobre la subrasante $\sigma_{z,4}$	-	0,8494	0,7535	Kg/cm ²
Asfáltica	Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\mathcal{E}}_{r,1}$	-	-	1,931x10 ⁻⁴	-
Subrasante	Deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4}$	-	-	6,456x10 ⁻⁴	-
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{máx.}$	0,7800	0,7316	0,7078	mm
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	-	0,4508	0,4407	mm
Paquete estructural	Deflexión en paquete estructural $\Delta_{paq.est.} = \Delta_{máx.} - \Delta_{s.}$	-	0,28.08	0,2671	mm

Comparación de los resultados obtenidos por el método CONREVIAL y SHELL (Progresiva 23+275 Km – Eje X)

Segundo punto de estudio: Progresiva 23+750 Km, Eje X (vista lateral)

Tabla 44

Comparación de los resultados obtenidos por el método CONREVIAL y SHELL (Progresiva 23+750 Km – Eje X)

G		CONDENTAL	SF	Unidad	
Capa	Parametro	CONREVIAL	Fórmula	Bisar 3.0	Unidad
Subrasante	Esfuerzo vertical de compresión sobre la subrasante $\sigma_{z,4}$	-	0,9004	0,7899	Kg/cm ²
Asfáltica	Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$	-	-	1,959x10 ⁻⁴	-
Subrasante	Deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4}$	-	-	6,279x10 ⁻⁴	-
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{máx.}$	0,8000	0,7000	0,6773	mm
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	-	0,4220	0,4099	mm
Paquete estructural	Deflexión en paquete estructural $\Delta_{paq.est.} = \Delta_{máx.} - \Delta_{s.}$	-	0,2780	0,2674	mm

Tercer punto de estudio: Progresiva 24+475 Km, Eje X (vista lateral)

Tabla 45

Comparación de los resultados obtenido por el método CONREVIAL y SHELL (Progresiva 24+475 Km – Eje X)

G		CONDENTAL	SF	Unidad	
Capa	Parametro	CONREVIAL	Fórmula	Bisar 3.0	Unidad
Subrasante	Esfuerzo vertical de compresión sobre la subrasante $\sigma_{z,4}$	-	0,7968	0,7137	Kg/cm ²
Asfáltica	Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$	-	-	1,898x10 ⁻⁴	-
Subrasante	Deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4}$	-	-	6,658x10 ⁻⁴	-
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{máx.}$	0,8800	0,7696	0,7441	mm
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	-	0,4896	0,4772	mm
Paquete estructural	Deflexión en paquete estructural $\Delta_{paq.est.} = \Delta_{máx.} - \Delta_{s.}$	-	0,2800	0,2669	mm

Cuarto punto de estudio: Progresiva 24+850 Km, Eje X (Vista Lateral)

Tabla 46

Comparación de los resultados obtenido por el método CONREVIAL y SHELL (Progresiva 24+850 Km – Eje X)

G		CONDENIAL	SH	Unidad	
Сара	Parametro	CONREVIAL	Fórmula	Bisar 3.0	Unidad
Subrasante	Esfuerzo vertical de compresión sobre la subrasante $\boldsymbol{\sigma}_{z,4}$	-	0,8782	0,7742	Kg/cm ²
Asfáltica	Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$	-	-	1,947x10 ⁻⁴	-
Subrasante	Deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4}$	-	-	6,355x10 ⁻⁴	-
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{máx.}$	0,9600	0,7131	0,6902	mm
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	-	0,4331	0,4229	mm
Paquete estructural	Deflexión en paquete estructural $\Delta_{paq.est.} = \Delta_{máx.} - \Delta_{s.}$	-	0,2800	0,2673	mm

4.1.4.2 Determinación de las deflexiones en eje Y (Vista Frontal).

Datos:

Eje trasero o equivalente:

8,2 Tn.

Cálculo de carga aplicada: (P)

$$\frac{P}{4} = \frac{8,2 \text{ Tn}}{4} = 2,05 \text{ Tn}$$

$$2,05 \text{ Tn} * \left(\frac{9,8067 \text{ kN}}{1 \text{ Tn}}\right) = 20,10 \text{ kN}.$$

Cálculo de la presión de contacto (q):

$$q = \frac{P}{Ac}$$
$$q = 5.6 \text{ Kg/cm}^2$$

$$5.6 \frac{\text{kg}}{\text{cm}^2} * \left(\frac{9.8067 \text{ N}}{1 \text{ kg}}\right) * \left(\frac{10\ 000\ \text{cm}^2}{1\ \text{m}^2}\right) = 549\ 175,20\ \frac{\text{N}}{\text{m}^2}$$

549 175,20
$$Pa * \left(\frac{1 \text{ kPa}}{1000 \text{ Pa}}\right) = 549,18 \text{ kP}$$

Cálculo del área de contacto (Ac): Empleamos la ecuación (14)

$$Ac = \frac{2,050 \text{ kg}}{5,6 \text{ kg/cm}^2}$$
, $Ac = 366,07 \text{ cm}^2$

Cálculo del radio de plato de carga (a): Empleamos la ecuación (16)

$$a = \sqrt{\frac{P}{\pi q}}$$

$$a = \sqrt{\frac{366,07 \text{ cm}^2}{3,141516}} = 10,79 \text{ cm}$$

$$a = 0,1079 \text{ m}$$

Cálculo del radio de plato de carga (a): Empleamos la ecuación (17)

$$S = 3a$$

$$S = 3(0,1079) = 0,3237 m$$

$$\frac{S}{2} = \frac{0,3237 m}{2} = 0,1619 m$$

Primer punto de estudio: Progresiva 23+275 km, eje Y (Vista Frontal)

Figura 108. Esquema del modelo estructural en eje Y. (Progresiva 23+275 Km – Vista frontal)

<u> </u>	BISAR 3.0	- Bitumen St	ress Analysis	in Roads						
Proje	ect Edit	Copy From Res	ults Window H	Help						
PRO	GRESIVA	23+275 KM E	JE Y				×			
N	umber of S	Systems (1-10)	1							
S	System Description: PROGRESIVA 23+275 KM EJE Y									
	L	oads	Layers	Pos	sitions					
	Use Stan	dard Dual Whe	eel? 🔲			<u>S</u> ave	<u>R</u> etrieve			
н	Mode of Load: 3 - Stress and Radius No of Circular Loads (1-10): 2									
	Load Number	Vertical Stress (kPa)	Radius (m)	X Coordinate (m)	Y Coordinate (m)	Horizontal Stress (kPa)	Shear Direction (degr.)			
	1	549,180	0,1079	0,0000	0,1619	0,000	0,0			
	2	549,180	0,1079	0,0000	-0,1619	0,000	0,0			
ш										
н										

Figura 109. Información de entrada de la presión de contacto y carga. (Progresiva 23+275 Km – Eje Y)

🛗 BISAR 3.0 - Bi	tumen Stre	ss Analysis in	Roads		
Project Edit Copy F	rom Results	; Window Help)		
PROGRESIVA 23+2	275 KM EJE	Y			×
Number of Syste	ms (1-10):	1 🖨			
System Descripti	on: PROGI	RESIVA 23+27	5 KM EJE Y		Ĩ
Loads		Layers	Positio	าร	
Full Friction Be	tween Laye	rs? 🔽			<u>Save</u> <u>R</u> etrieve
				No	of Layers (1-10): 🚺 🚔
	Layer Number	Thickness (m)	Modulus of Elasticity (MPa)	Poisson's Ratio	
	1	0,050	1,36E+03	0,35	
	2	0,150	3,07E+02	0,37	
	3	0,150	2,23E+02	0,40	
	4		8,60E+01	0,45	

Figura 110. Información de las capas que conforman la estructura y sus características. (Progresiva 23+275 Km – Eje Y)

Figura 111. Información de entrada, posiciones. (Progresiva 23+275 Km - Eje Y)

PROGRESIVA 23+275 KM EJE Y + SR

System 1: PROGRESIVA 23+275 KM EJE Y + SR

Structur	e			Loads								
Layer Number	Thidnes (n)	Mobilus of Elasticity (MPa)	Paissan's Ratio	Load Number	Ver Load (kN)	tical Stress (MPa)	Harizanta Load (KN)	L(Shear) Stress (MPa)	Radius (m)	X-Coard (m)	Y-Coard (m)	Shear Angle (Degrees)
1	0,050	1,360E+03	0,25	1	2,009E+01	5,492E-01	0,000E+00	0,000E+00	1,079E-01	0,000E+00	1,619E-01	0,000E+00
2	0,150 0,150	3,070E+02 * ****	0,37	ź	2,009 E+01	5,492E-01	0,000 E+ 00	0,000 E+ 00	1,079E-01	0,000 E+ 00	-1,619E-01	0,000 E+ 00
4	0,100	8,600E+01	0,45									

						Stresses			Strains			Displacements	
Position	Layer	X-Courd	Y-Courd	Depth	xx	YY	22	xx	YY	ZZ	ux	ົໜ	uz
Nimber	Number	(m)	መ	¢n)	(ATPa)	(ሰዊቋ)	(#90A)	µstrain.	pustarain.	pstrain.	(ian)	(m)	(tan)
1	1	0,000 E+ 00	0,000 E+ 00	0,000 E+ 00	-4,601E-01	1,227E-01	0,000 E+ 00	-3,699E+02	2,086E+02	8,684E+01	0,000E+00	0,000 E+ 00	5,202 E+ 02
2	l	0,000 E+ 00	1,619E-01	0,000 E+ 00	-1,198E+00	-1,106E+00	-5,492E-01	-4,548E+02	-3,63 4E+ 02	1,889E+02	0,000E+00	-1,920E+01	5,869 E +02
3	1	0,000 E+ 00	1,619E-01	5,000E-02	2,933E-01	2,648E-01	-4,423E-01	2,614E+02	2,330 E +02	-4,688E+02	0,000E+00	-2,592E+00	5,791E+02
4	ź	0,000 E+ 00	0,000 E+ 00	2,000E-01	5,854E-02	1,467E-03	-1,107E-01	3,223E+02	6,763E+01	-4,329E+02	0,000E+00	0,000 E+ 00	4,759E+02
5	3	0,000 E+ 00	0,000 E+ 00	3,500 E-01	7,163E-02	5,182E-02	-5,850E-02	3,332E+02	2,088 E+ 02	-4,838E+02	0,000E+00	0,000 E+ 00	4,058E+02
6	4	0,000 E+ 00	0,000 E+ 00	3,50 1E-01	-1,796E-03	-9,169E-03	-5,848E-02	3,331E+02	2,088E+02	-6,226E+02	0,000E+00	0,000 E+ 00	4,058E+02
7	4	0,000 E+ 00	0,000 E+ 00	6,500E-01	-6,644E-04	-1,787E-03	-2,703E-02	1,431E+02	1,241E+02	-3,015E+02	0,000E+00	0,000 E+ 00	2,748E+02
8	4	0,000 E+ 00	0,000 E+ 00	1,000E+00	-2,067E-04	-4,711E-04	-1,408E-02	7,373E+01	6,927E+01	-1,602E+02	0,000 E+ 00	0,000 E+ 00	1,979E+02

Figura 112. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva 23+275 Km – Eje Y)

$$-0.05850 \text{ MPa} * \left(\frac{1000 \text{ kPa}}{1 \text{ MRa}}\right) * \left(\frac{1000 \text{ Pa}}{1 \text{ kPa}}\right) = -58500.00 \text{ Pa}$$

$$-58500.00 \frac{N}{m^2} * \left(\frac{1 \text{ Kgf}}{9.8067 \text{ N}}\right) * \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 =$$

$$-58500.00 \frac{N}{m^2} * \left(\frac{1 \text{ kgf}}{9.8067 \text{ N}}\right) * \left(\frac{1 \text{ m}^2}{10 \text{ 000 cm}^2}\right) = -0.5965 \frac{Kgf}{\text{ cm}^2}$$

Conversión de resultado del software Bisar 3.0: Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$ y deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4.}$

$$\varepsilon_{r,1} = \frac{\varepsilon_{r,1} \,\mu strain}{10^6}$$

$$\varepsilon_{r,1} = \frac{2,614x10^2}{10^6}, \qquad \varepsilon_{r,1} = 2.614 \, x10^{-4}$$

$$\varepsilon_{z,4} = \frac{-4,838x10^2}{10^6}, \qquad \varepsilon_{r,4} = -4,838 \, x10^{-4}$$

$$586,9\mu m = \left(\frac{1 \text{ mm}}{1000 \text{ µm}}\right) = 0,5869 \text{ mm}$$
$$405,8\mu m = \left(\frac{1 \text{ mm}}{1000 \text{ µm}}\right) = 0,4058 \text{ mm}$$

Сара	Parámetro	Valor servicio	Valor	admisible	Unidades		Observación
Subrasante	Esfuerzo vertical de compresión sobre	0,5965	1,0107	(CRR)	Kg/cm ²	Cumple	Control de ahuellamiento
	la subrasante $\sigma_{z,4}$	- ,	,	(-)	0	-	
Asfáltica	Deformación radial de tracción en la	2,614x10 ⁻⁴	1,088x10)-4 (CRR)	-	No cumple	Control de fatiga
	base de la capa astáltica $\boldsymbol{\mathcal{E}}_{r,1}$,				L	C
Subrasante	Deformación vertical de compresión	4 838x10 ⁻⁴	7 949x10) ⁻⁴ (Shell)	_	Cumple	Control de ahuellamiento
Sublubulite	sobre la subrasante $\boldsymbol{\varepsilon}_{z,4}$	1,000110	7,9 19A10	(Shell)		Campie	
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{máx.}$	0,5869	1,1616	(Huang)	mm	Cumple	Control de deflexión
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	0,4058		-	mm	-	-
Paquete estructural	Deflexión en paquete estructural	0.1811		-	mm	-	_
	$\Delta_{\text{paq.est.}} = \Delta_{\text{máx.}} - \Delta_{\text{s.}}$	-,-011					

Parámetros de verificación de valores de servicio por software y admisible del modelo estructural. (Progresiva 23+275 Km – Eje Y).

Segundo punto de estudio: Progresiva 23+750 km, eje Y (Vista Frontal)

Figura 113. Esquema del modelo estructural en eje Y. (Progresiva 23+750 Km – Vista frontal)

**	BISAR 3.0	- Bitumen St	ress Analysis	in Roads								
Proj	ect Edit 🤇	Copy From Resu	ults Window H	Help								
PRO	OGRESIVA	23+750 KM E	JE Y				×					
N	lumber of S	Systems (1-10):	1									
S	System Des	cription: PRO	GRESIVA 23+	750 KM EJE Y	,							
	L	oads	Layers	Pox	sitions							
ш	Use Stan	dard Dual Whe	eel? 🗌			<u>S</u> ave	Retrieve					
	Mode of Load: 3 - Stress and Radius V No of Circular Loads (1-10): 2											
I	Load Number	Vertical Stress (kPa)	Radius (m)	X Coordinate (m)	Y Coordinate (m)	Horizontal Stress (kPa)	Shear Direction (degr.)					
ш	1	549,180	0,1079	0,0000	0,1619	0,000	0,0					
	2	549,180	0,1079	0,0000	-0,1619	0,000	0,0					
ш												
ш												
ш												
ш												

Figura 114. Información de entrada de la presión de contacto y carga. (Progresiva 23+750 Km – Eje Y)

Project Edit Copy From Results Window Help PROGRESIVA 23+750 KM EJE Y Number of Systems (1-10): System Description: PROGRESIVA 23+750 KM EJE Y Loads Layers Positions											
PROGRESIVA 23+750 KM EJE Y Number of Systems (1-10): 1 System Description: PROGRESIVA 23+750 KM EJE Y Loads Layers Positions											
Number of Systems (1-10): 1 1 1 System Description: PROGRESIVA 23+750 KM EJE Y Loads Layers											
1 System Description: PROGRESIVA 23+750 KM EJE Y Loads Layers Positions											
System Description: PROGRESIVA 23+750 KM EJE Y Loads Layers Positions											
Loads Layers Positions											
Full Friction Between Layers? Save											
No of Layers (1-10): 4 🚔											
Layer Thickness Modulus of Poisson's Number (m) Elasticity Ratio (MPa)											
1 0,050 1,36E+03 0,35											
2 0,150 3,07E+02 0,37											
<u>3</u> 0,150 2,23E+02 0,40											
4 9,50E+01 0,45											

Figura 115. Información de las capas que conforman la estructura y sus características. (Progresiva 23+750 Km – Eje Y)

Figura 116. Información de entrada, posiciones. (Progresiva 23+750 Km – Eje Y)

PROGRESIVA 23+750 KM EJE Y + SR

System 1: PROGRESIVA 23+750 KM EJE Y + SR

Structur	Structure			Loads								
Layer	Thickness	Mobilus af Electicity	Paissan's	Load	Ver Load	tical Stress	Harizarda Load	L(Shear) Stress	Ratius	X-Coard	Y- Courd	Shear Angle
Number	(m)	(AT24)	Ratio	Namb er	(kin)	(6924)	(KA)	(#974)	(m)	¢m)	መ	(Degrees)
1	0,050	1,360 E+ 03	0,35	l	2,009E+01	5,492E-01	0,000 E+ 00	0,000 E+ 00	1,079E-01	0,000 E+ 00	1,619E-01	0,000 E+ 00
ź	0,150	3,070 E+ 02	0,37	ž	2,009E+01	5,492E-01	0,000 E+ 00	0,000 E+ 00	1,079E-01	0,000 E+ 00	-1,619E-01	0,000 E+ 00
3	0,150	2,230 E+ 02	0,40									
4		9.500E+01	0,45									

						Stresses			Strains			Displacements	
Position	Layer	X-Courd	Y-Courd	Depth	xx	YY	ZZ	xx	YY	ZZ	ux	_ UY	uz
Number	Nimber	¢π)	መ	(m)	(ATPa)	(ሰዊቋ)	(ATPa)	µstrain.	pustrain.	pstrain.	(jan)	(im)	(im)
1	l	0,000 E+ 00	0,000 E+ 00	0,000 E+ 00	-4,459E-01	1,358E-01	0,000 E+ 00	-3,628E+02	2, 146E+ 02	7,979E+01	0,000E+00	0,000 E+ 00	4,908E+02
ź	1	0,000 E+ 00	1,619E-01	0,000 E+ 00	-1,184E+00	-1,094E+00	-5,492E-01	-4,481E+02	-3,582 E +02	1,825E+02	0,000E+00	-1,827E+01	5,58 4E+ 02
3	l	0,000 E+ 00	1,619E-01	5,000 E -02	2,985E-01	2,695E-01	-4,426E-01	2,640E+02	2,352 E+ 02	-4,716E+02	0,000E+00	-2,20 4E+ 00	5,503 E+ 02
4	ź	0,000 E+ 00	0,000 E+ 00	2,000E-01	5,588E-02	-1,266E-03	-1,128E-01	3,195E+02	6,452E+01	-4,334E+02	0,000E+00	0,000 E+ 00	4,458E+02
5	3	0,000E+00	0,000E+00	3,500E-01	6,391E-02	4,485E-02	-6,107E-02	3,157E+02	1,961E+02	-4,689E+02	0,000E+00	0,000 E+ 00	3,765E+02
б	4	0,000 E+ 00	0,000 E+ 00	3,50 1E-01	-1,854E-03	-9,684E-03	-6,105E-02	3,155E+02	1,960E+02	-5,880 E +02	0,000E+00	0,000 E+ 00	3,764E+02
7	4	0,000 E+ 00	0,000 E+ 00	6,500E-01	-6,163E-04	-1,807E-03	-2,796E-02	1,345E+02	1,163E+02	-2,828 E +02	0,000E+00	0,000 E+ 00	2,530 E+ 02
8	4	0,000 E+ 00	0,000 E+ 00	1,000E+00	-1,772E-04	-4,552E-04	-1,442E-02	6,861E+01	6,436E+01	-1,488E+02	0,000E+00	0,000 E+ 00	1,812E+02

Figura 117. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva 23+750 Km – Eje Y)

$$-0.06107 \text{ MPa} * \left(\frac{1000 \text{ kPa}}{1 \text{ MRa}}\right) * \left(\frac{1000 \text{ Pa}}{1 \text{ kPa}}\right) = -61\,070.00 \text{ Pa}$$

$$-61\,070.00 \frac{N}{\text{m}^2} * \left(\frac{1 \text{ Kgf}}{9.8067 \text{ N}}\right) * \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 =$$

$$-61\,070.00 \frac{N}{\text{m}^2} * \left(\frac{1 \text{ kgf}}{9.8067 \text{ N}}\right) * \left(\frac{1 \text{ m}^2}{10\,000 \text{ cm}^2}\right) = -0.6227 \frac{\text{Kgf}}{\text{cm}^2}$$

Conversión de resultado del software Bisar 3.0: Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$ y deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4.}$

$$\varepsilon_{r,1} = \frac{\varepsilon_{r,1} \,\mu strain}{10^6}$$

$$\varepsilon_{r,1} = \frac{2,640 \times 10^2}{10^6}, \qquad \varepsilon_{r,1} = 2,640 \times 10^{-4}$$

$$\varepsilon_{z,4} = \frac{-4,689 \times 10^2}{10^6}, \qquad \varepsilon_{r4} = -4,689 \times 10^{-4}$$

558,4µm =
$$\left(\frac{1 \text{ mm}}{1000 \text{ µm}}\right)$$
 = 0,5584 mm
376,5µm = $\left(\frac{1 \text{ mm}}{1000 \text{ µm}}\right)$ = 0,3765 mm

Сара	Parámetro	Valor servicio	Valor	admisible	Unidades		Observación
Subrasante	Esfuerzo vertical de compresión sobre la subrasante σ_{-4}	0,6227	1,2160	(CRR)	Kg/cm ²	Cumple	Control de ahuellamiento
Asfáltica	Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$	2,640x10 ⁻⁴	1,088x10	-4 (CRR)	-	No cumple	Control de fatiga
Subrasante	Deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4}$	4,689x10 ⁻⁴	7,949x10	⁻⁴ (Shell)	-	Cumple	Control de ahuellamiento
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{máx.}$	0,5584	1,1616	(Huang)	mm	Cumple	Control de deflexión
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	0,3765		-	mm	-	-
Paquete estructural	Deflexión en paquete estructural $\Delta_{paq.est.} = \Delta_{máx.} - \Delta_{s.}$	0,1819		-	mm	-	-

Parámetros de verificación de valores de servicio por software y admisible del modelo estructural. (Progresiva 23+750 Km – Eje Y)

Tercer punto de estudio: Progresiva 24+475 km, eje Y (Vista frontal)

Figura 118. Esquema del modelo estructural en eje Y. (Progresiva 24+475 Km – Vista frontal)

iii B	BISAR 3.0	- Bitumen St	ress Analysis	in Roads								
Proje	ct Edit 🤇	Copy From Res	ults Window H	Help								
PRO	GRESIVA	24+475 KM E	JE Y				×					
N	umber of S	Systems (1-10)	1									
S	ystem Des	cription: PRO	GRESIVA 24+	475 KM EJE Y	1							
	L	pads	Layers	Po:	sitions							
	Use Stan	dard Dual Whe	eel? 🗆			<u>S</u> ave	Retrieve					
L	Mode of Load: 3 - Stress and Radius V No of Circular Loads (1-10): 2											
	Load Number	Vertical Stress (kPa)	Radius (m)	X Coordinate (m)	Y Coordinate (m)	Horizontal Stress (kPa)	Shear Direction (degr.)					
	1	549,180	0,1079	0,0000	0,1619	0,000	0,0					
	2	549,180	0,1079	0,0000	-0,1619	0,000	0,0					

Figura 119. Información de entrada de la presión de contacto y carga. (Progresiva 24+475 Km – Eje Y)

🛗 BISAR 3.0 - Bitu	ımen Stre	ss Analysis in	Roads			
Project Edit Copy Fro	om Results	: Window Help)			
PROGRESIVA 24+47	5 KM EJE	γ				×
Number of System	s (1-10):	1				
System Description	n: PROGE	RESIVA 24+47	5 KM EJE Y	_		_
Loads		Layers	Positio	ns		
Full Friction Betw	ween Laye	rs? 🔽			<u>Save</u> <u>R</u> etrieve	
				No	of Layers (1-10): 4	
	Layer Number	Thickness (m)	Modulus of Elasticity (MPa)	Poisson's Ratio		L
	1	0,050	1,36E+03	0,35		
	2	0,150	3,07E+02	0,37		
	3 4	0,150	2,23E+02 7.70E+01	0,40		
			1,102.01			

Figura 120. Información de las capas que conforman la estructura y sus características. (Progresiva 24+475 Km – Eje Y)

🛗 BISAR 3.	0 - Bitume	n Stress Analy	sis in Roads									
Project Edit	Copy From	Results Window	/ Help									
PROGRESIV	4 24+475 K	(m eje y + sr					×					
Number of 7 System De	Systems (1 escription: [Loads	-10): 1 🔿	24+475 KM E	JE Y + SR Positions	g	ave Betrie						
<u>S</u> elec	Select Positions for Standard Dual Wheel No of Position Entries (1-10): 8											
	Position Number	X Coordinate (m)	Y Coordinate (m)	Z (depth) Coordinate (m)	Layer No							
	1	0,0000	0,0000	0,0000	1		_					
	2	0,0000	0,1619	0,0000	1							
	3	0,0000	0,1619	0,0500	1	Select Layer	_					
	4	0,0000	0,0000	0,2000	2	Select Layer	_					
	5	0,0000	0,0000	0,3500	3	Select Layer						
	6	0,0000	0,0000	0,3501	4							
	7	0,0000	0,0000	0,6500	4							
	8	0,0000	0,0000	1,0000	4							

Figura 121. Información de entrada, posiciones. (Progresiva 24+475 Km – Eje Y)

PROGRESIVA 24+475 KM EJE Y + SR

System 1: PROGRESIVA 24+475 KM EJE Y + SR

Structure

Loads

Mobilus af				Vertical Ho				Harizardal (Shear)			Shear	
Layer Number	Thickness (m)	Elasticity (MPa)	Paissan's Ratio	Load Number	Load (KN)	Stress (MBa)	Load (kN)	Stress (MBa)	Radius (m)	X-Courd (m)	Y-Coard (m)	Angle (Degrees)
l	0,050	1,360E+03	0,35	1	2,009 E+01	5,492E-01	0,000 E+ 00	0,000 E+ 00	1,079E-01	0,000 E+ 00	1,619E-01	0,000 E+ 00
ź	0,150	3,070 E+ 02	0,37	2	2,009E+01	5,492E-01	0,000 E+ 00	0,000 E+ 00	1,079E-01	0,000 E+ 00	-1,619E-01	0,000 E+ 00
3	0,150	2,230E+02	0,40									
4		7.700E+01	0.45									

						Stresses			Strains			Displacements	
Position	Layer	X-Coard	Y-Courd	Depth	xx	YY	ZZ	xx	YY	ZZ	ux	ับข	uz
Number	Nimber	(m)	¢π)	¢ ባ)	(ATD4)	(ATEA)	(ABA)	pustrain.	posterain.	pustrain.	(ian)	(jan)	(um)
1	l	0,000 E+ 00	0,000E+00	0,000 E+ 00	-4,763E-01	1,077E-01	0,000E+00	-3,779E+02	2,018E+02	9,484E+01	0,000 E+ 00	0,000 E+ 00	5,55 4E+ 02
ź	1	0,000 E+ 00	1,619E-01	0,000 E+ 00	-1,213E+00	-1,119E+00	-5,492E-01	-4,624E+02	-3,693E+02	1,962E+02	0,000 E+ 00	-2,026E+01	6,210E+02
3	l	0,000 E+ 00	1,619E-01	5,000 E -02	2,874E-01	2,594E-01	-4,419E-01	2,583E+02	2,305E+02	-4,657E+02	0,000 E+ 00	-3,036E+00	6,134E+02
4	ź	0,000 E+ 00	0,000 E+ 00	2,000 E-01	6,157E-02	4,580E-03	-1,083E-01	3,256 E+ 02	7,127E+01	-4,326E+02	0,000 E+ 00	0,000 E+ 00	5,117E+02
5	3	0,000 E+ 00	0,000 E+ 00	3,500 E-01	8,032E-02	5,967E-02	-5,568E-02	3,530 E+ 02	2,23 4E+ 02	-5,008E+02	0,000 E+ 00	0,000 E+ 00	4,409E+02
6	4	0,000 E+ 00	0,000 E+ 00	3,50 1E-01	-1,765E-03	-8,643E-03	-5,566E-02	3,529E+02	2,23 4E+ 02	-6,621E+02	0,000 E+ 00	0,000 E+ 00	4,408E+02
7	4	0,000 E+ 00	0,000 E+ 00	6,500E-01	-7,214E-04	-1,770E-03	-2,601E-02	1,530E+02	1,332E+02	-3,233E+02	0,000 E+ 00	0,000 E+ 00	3,011E+02
8	4	0,000 E+ 00	0,000 E+ 00	1,000E+00	-2,405E-04	-4,902E-04	-1,370E-02	7,978E+01	7,508E+01	-1,736E+02	0,000E+00	0,000 E+ 00	2,182E+02

Figura 122. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva 24+475 Km – Eje Y)

$$-0.05568 \text{ MPa} * \left(\frac{1000 \text{ kPa}}{1 \text{ MRa}}\right) * \left(\frac{1000 \text{ Pa}}{1 \text{ kPa}}\right) = -55680,00 \text{ Pa}$$

$$-55680,00 \frac{N}{m^2} * \left(\frac{1 \text{ Kgf}}{9,8067 \text{ N}}\right) * \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 =$$

$$-55680,00 \frac{N}{m^2} * \left(\frac{1 \text{ kgf}}{9,8067 \text{ N}}\right) * \left(\frac{1 \text{ m}^2}{10 000 \text{ cm}^2}\right) = -0,5678 \frac{Kgf}{\text{cm}^2}$$

Conversión de resultado del software Bisar 3.0: Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$ y deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4.}$

$$\varepsilon_{r,1} = \frac{\varepsilon_{r,1} \,\mu strain}{10^6}$$

$$\varepsilon_{r,1} = \frac{2,583x10^2}{10^6}, \qquad \varepsilon_{r,1} = 2,583 \,x10^{-4}$$

$$\varepsilon_{z,4} = \frac{-5,008x10^2}{10^6}, \qquad \varepsilon_{r,1} = -5,008 \,x10^{-4}$$

$$621,0\,\mu\text{m} = \left(\frac{1\,\text{mm}}{1000\,\mu\text{m}}\right) = 0,6210\,\text{mm}$$
$$440,9\,\mu\text{m} = \left(\frac{1\,\text{mm}}{1000\,\mu\text{m}}\right) = 0,4409\,\text{mm}$$

Сара	Parámetro	Valor servicio	Valor admisible		Unidades	Observación		
Subrasante	Esfuerzo vertical de compresión sobre	0,5678	1 8121	(CRR)	Kg/cm ²	Cumple	Control de ahuellamiento	
Sublusuite	la subrasante $\sigma_{z,4}$		1,0121			Cumpie	control de andemannento	
A officia	Deformación radial de tracción en la	2,583x10 ⁻⁴	1,088x10 ⁻⁴ (CRR)		-	No cumple	Control do fotigo	
Astatuca	base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$						Control de l'auga	
Subracanta	Deformación vertical de compresión	5,008x10 ⁻⁴	7,949x10 ⁻⁴ (Shell)			Cumple	Control do abrellamiento	
Subrasante	sobre la subrasante $\boldsymbol{\mathcal{E}}_{z,4}$				-		Control de anuenamiento	
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{máx.}$	0,6210	1,1616	(Huang)	mm	Cumple	Control de deflexión	
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	0,4409		-	mm	-	-	
Do outoto a ofine oficial	Deflexión en paquete estructural	0,1801	-					
Paquele estructural	$\Delta_{\text{pag.est.}} = \Delta_{\text{máx.}} - \Delta_{\text{s.}}$				m	-	-	

Parámetros de verificación de valores de servicio por software y admisible del modelo estructural. (Progresiva 24+475 Km – Eje Y)
Cuarto punto de estudio: Progresiva 24+850 km, eje Y (Vista Frontal)

Figura 123. Esquema del modelo estructural en eje Y. (Progresiva 24+850 Km – Vista frontal)

Figura 124. Información de entrada de la presión de contacto y carga. (Progresiva 24+850 Km – Eje Y)

🛗 BISAR 3.0 - Bitu	men Stre	ss Analysis in	Roads		
Project Edit Copy Fro	m Results	Window Help	I		
PROGRESIVA 24+85	60 KM EJE	Y			×
Number of System	s (1-10):	1 🖨			
	_				
System Description	n: PROGR	RESIVA 24+85	0 KM EJE Y		
Loads		Layers	Positio	ns	
Full Friction Betw	ween Laye	rs? 🔽			<u>Save</u> <u>R</u> etrieve
				No	of Layers (1-10): 🚺 📥
	Layer Number	Thickness (m)	Modulus of Elasticity (MPa)	Poisson's Ratio	
	1	0,050	1,36E+03	0,35	
	2	0,150	3,07E+02	0,37	
	3	0,150	2,23E+02	0,40	
	4		9,10E+01	0,45	

Figura 125. Información de las capas que conforman la estructura y sus características. (Progresiva 24+850 Km – Eje Y)

🛗 BISAR 3.	0 - Bitume	n Stress Anal	ysis in Roads						
Project Edit Copy From Results Window Help									
PROGRESIVA 24+850 KM EJE Y + SR									
Number of	Number of Systems (1-10):								
	5								
System De	scription:	PROGRESIVA	244850 KM E						
	shee		241030 KM E	Positions					
	20003	Edyci	•	i ositions		ave Betrie	ve		
<u>S</u> elec	t Positions	for Standard D	ual Wheel	No.o	f Desilien Er	urios (1 10): 8			
	Desilien			7 (4					
	Number	Coordinate	Coordinate	Coordinate	No				
		(m)	(m)	(m)					
	1	0,0000	0,0000	0,0000	1				
	2	0,0000	0,1619	0,0000	1				
	3	0,0000	0,1619	0,0500	1	Select Layer			
	4	0,0000	0,0000	0,2000	2	Select Layer			
	5	0,0000	0,0000	0,3500	3	Select Layer			
	6	0,0000	0,0000	0,3501	4				
	/	0,0000	0,0000	0,6500	4				
	8	0,0000	0,0000	1,0000	4				

Figura 126. Información de entrada, posiciones. (Progresiva 24+850 Km – Eje Y)

BISAR 3.0 - Block Report

PROGRESIVA 24+850 KM EJE Y + SR

System 1: PROGRESIVA 24+850 KM EJE Y + SR

Str	uct	tur	e
•••			•

Loads

		Mobilits of			Ver	tical	Kaizarta	l (Shear)				Shear
Layer Number	Thickness (m)	Elasticity (MPa)	Paissan's Ratio	Load Number	Load (kN)	Stress (MIPa)	Load (kN)	Stress (MPa)	Radius (m)	X-Coard (m)	Y-Coard (m)	Angle (Degrees)
l	0,050	1,360E+03	0,35	1	2,009 E+01	5,492E-01	0,000 E+ 00	0,000 E+ 00	1,079E-01	0,000 E+ 00	1,619E-01	0,000 E+ 00
2	0,150	3,070E+02	0,37	2	2,009E+01	5,492E-01	0,000 E+ 00	0,000E+00	1,079E-01	0,000 E+ 00	-1,619E-01	0,000 E+ 00
3	0,150	2,230E+02	0,40									
4		9.100E+01	0.45									

Position	Layer	X-Courd	Y-Coard	Depth	xx	Stresses YY	ZZ	xx	Strains YY	ZZ	ux	Displacements UY	uz
Number	Nimber	(m)	¢π)	¢n)	(ATD4)	(ሰዊቋ)	(ATPA)	pustraiin.	pustrain.	pustraiin.	(tan)	(um)	(im)
1	1	0,000 E+ 00	0,000 E+ 00	0,000 E+ 00	-4,520E-01	1,302E-01	0,000 E+ 00	-3,658E+02	2,120E+02	8,282E+01	0,000E+00	0,000 E+ 00	5,032 E+ 02
ź	1	0,000 E+ 00	1,619E-01	0,000 E+ 00	-1,190E+00	-1,099E+00	-5,492E-01	-4,510E+02	-3,60 4E+ 02	1,853E+02	0,000 E+ 00	-1,867E+01	5,705E+02
3	1	0,000 E+ 00	1,619E-01	5,000E-02	2,963E-01	2,675E-01	-4,425E-01	2,629E+02	2,343E+02	-4,704E+02	0,000 E+ 00	-2,370E+00	5,625E+02
4	ź	0,000 E+ 00	0,000 E+ 00	2,000E-01	5,702E-02	-9,315E-05	-1,119E-01	3,207E+02	6,585E+01	-4,331E+02	0,000E+00	0,000 E+ 00	4,585E+02
5	3	0,000 E+ 00	0,000 E+ 00	3,500 E-01	6,723E-02	4,785E-02	-5,995E-02	3,232E+02	2,015E+02	-4,753E+02	0,000E+00	0,000 E+ 00	3,889 E+ 02
6	4	0,000 E+ 00	0,000 E+ 00	3,501E-01	-1,825E-03	-9,457E-03	-5,99 4E -02	3,231E+02	2,015E+02	-6,029E+02	0,000E+00	0,000 E+ 00	3,889 E+ 02
7	4	0,000 E+ 00	0,000 E+ 00	6,500E-01	-6,367E-04	-1,798E-03	-2,756E-02	1,382E+02	1,197E+02	-2,908 E +02	0,000E+00	0,000 E+ 00	2,622E+02
8	4	0,000 E+ 00	0,000 E+ 00	1,000E+00	-1,898E-04	-4,619E-04	-1,427E-02	7,078E+01	6,645E+01	-1,536E+02	0,000E+00	0,000 E+ 00	1,882E+02

Conversión de resultado del software Bisar 3.0: Esfuerzo vertical de compresión sobre la subrasante $\sigma_{z,4}$ de MPa a Kg/cm².

$$-0.05995 \text{ MPa} * \left(\frac{1000 \text{ kPa}}{1 \text{ MRa}}\right) * \left(\frac{1000 \text{ Pa}}{1 \text{ kPa}}\right) = -59950.00 \text{ Pa}$$

$$-59950.00 \frac{N}{m^2} * \left(\frac{1 \text{ Kgf}}{9.8067 \text{ N}}\right) * \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^2 =$$

$$-59950.00 \frac{N}{m^2} * \left(\frac{1 \text{ kgf}}{9.8067 \text{ N}}\right) * \left(\frac{1 \text{ m}^2}{10 000 \text{ cm}^2}\right) = -0.6113 \frac{\text{Kgf}}{\text{cm}^2}$$

Conversión de resultado del software Bisar 3.0: Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$ y deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4.}$

$$\varepsilon_{r,1} = \frac{\varepsilon_{r,1} \,\mu strain}{10^6}$$

$$\varepsilon_{r,1} = \frac{2,629 \times 10^2}{10^6}, \qquad \varepsilon_{r,1} = 2,629 \times 10^{-4}$$

$$\varepsilon_{z,4} = \frac{-4,753 \times 10^2}{10^6}, \qquad \varepsilon_{r,4} = -4,753 \times 10^{-4}$$

Conversión de resultado del software Bisar 3.0: Deflexión en la superficie $\Delta_0 = \Delta_{máx.}$ de μm a mm.

570,5µm =
$$\left(\frac{1 \text{ mm}}{1000 \text{ µm}}\right)$$
 = 0,5705 mm
388,9µm = $\left(\frac{1 \text{ mm}}{1000 \text{ µm}}\right)$ = 0,3889 mm

Сара	Parámetro	Valor servicio	Valor :	admisible	Unidades		Observación
Subrasante	Esfuerzo vertical de compresión sobre la subrasante ($\sigma_{z,4}$)	0,6113	1,1126	(CRR)	Kg/cm ²	Cumple	Control de ahuellamiento
Asfáltica	Deformación radial de tracción en la base de la capa asfáltica $\boldsymbol{\varepsilon}_{r,1}$	2,629x10 ⁻⁴	1,088x10)-4 (CRR)	-	No cumple	Control de fatiga
Subrasante	Deformación vertical de compresión sobre la subrasante $\boldsymbol{\varepsilon}_{z,4}$	4,753x10 ⁻⁴	7,949x10) ⁻⁴ (Shell)	-	Cumple	Control de ahuellamiento
Modelo estructural	Deflexión en la superficie $\Delta_0 = \Delta_{max.}$	0,5705	1,1616	(Huang)	mm	Cumple	Control de deflexión
Subrasante	Deflexión en la subrasante $\Delta_{s.}$	0,3889		-	mm	-	-
Paquete estructural	Deflexión en paquete estructural $\Delta_{paq.est.} = \Delta_{máx.} - \Delta_{s.}$	0,1816		-	mm	-	-

Parámetros de verificación de valores de servicio por software y admisible del modelo estructural. (Progresiva 24+850 Km – Eje Y)

Nota: Para valores admisibles se empleó las ecuaciones 72, 74, 75 y 76

4.1.5 Análisis del comportamiento de los esfuerzos, deformaciones y deflexiones del pavimento.

4.1.5.1 Vista lateral (Eje en X).

Primer punto de estudio: Progresiva 23+275 Km. Eje X.

- a. Esfuerzos radial σ_{x} , tangencial σ_{y} .
- La tendencia del σ_x y σ_y , es parábola creciente en la capa rodadura. Los esfuerzos en la rasante del pavimento son de compresión y se transforma en un esfuerzo a tracción en la base de la carpeta asfáltica.
- La tendencia del σ_x y σ_y , es creciente hasta 1/4 del espesor de base y 3/4 es una parábola decreciente hasta la base de dicha capa y los esfuerzos son a tracción.
- La tendencia del σ_x y σ_y , es creciente en el espesor de sub base y los esfuerzos son a tracción.
- La tendencia del σ_x y σ_y , en la subrasante es de compresión y tiende a ser muy pequeñas cercanas a cero, es lineal mente decreciente a medida que se incremente la profundidad.

El comportamiento de los esfuerzos radiales y tangenciales de acuerdo el modelo estructural son iguales, representa la parábola color azul de acuerdo los valores de la tabla 51 y la gráfica en la figura 128. Los análisis de los esfuerzos radiales y tangenciales en los cuatro segmentos son similares, (progresivas 23+275, 23+750, 24+475 y 24+850 Km.). Se puede apreciar los valores en las tablas 56, 61, 66 y las gráficas en las figuras 132, 136, 140.

	7	G	Esfuerzos			
Punto	Z, m	Capa	Bisar (MPa)	(Kg/cm ²)		
1	0	1	-1,193E+00	-12,1652		
2	5	1	1,318E-01	1,3440		
3	20	2	7,278E-02	0,7421		
4	35	3	8,759E-02	0,8932		
5	3501	4	-2,879E-03	-0,0294		
6	65	4	-7,972E-04	-0,0081		
7	100	4	-2,378E-04 -0,0024			

Valores de esfuerzos radiales σ_x , tangenciales σ_y

Nota: Figura 92. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva 23+275 Km. – Eje X)

b. Esfuerzos vertical σ_z .

- La tendencia del σ_z, es decreciente en el espesor de la capa rodadura del esquema estructural. El máximo del σ_z, corresponde al punto de la rasante del pavimento y su capacidad es similar a la presión de contacto de 549,18 kPa, (0,549 MPa), así como se aprecia en la tabla 52.
- La disipación del σ_z , es en función de los espesores y módulos de elasticidad de las diferentes capas del paquete estructural. Mientras la calidad de los materiales sea mejor, el esfuerzo vertical que representa en la subrasante es menor y este parámetro es básico para el diseño y controlar la deformación o el ahuellamiento de las estructura de pavimentos flexibles.
- Para la estructura en estudio, progresiva 23+275 km, el esfuerzo vertical en la capa rodadura es parábola creciente y se disipa el 7,98%.
- La tendencia del σ_z , es parábola creciente, el 56,01% disipa en base granular.
- La tendencia del σ_z , es parábola creciente, el 22,56% disipa en la sub base.

La tendencia del σ_z, es parábola creciente, el 13,45% disipa en la subrasante.
 Se puede observar la parábola color rojo de la figura 128.

Tabla 52

Valores de esfuerzos verticales σ z.

D (7	C	Esfuerzos			
Punto	Z, m	Capa	Bisar (MPa)	(Kg/cm ²)		
1	0	1	-5,492E-01	-5,6003		
2	0,05	1	-5,054E-01	-5,1536		
3	0,20	2	-1,978E-01	-2,0170		
4	0,35	3	-7,389E-02	-0,7535		
5	0,3501	4	-7,386E-02	-0,7532		
6	0,65	4	-2,936E-02	-0,2994		
7	1,00	4	-1,463E-02	-0,1492		

Figura 128. Variación del esfuerzo radial σ_x , tangencial σ_y y vertical σ_z en función de la profundidad, Z. (Progresiva: 23+275 Km. – Eje X)

- c. Deformación radial $\boldsymbol{\varepsilon}_{x}$ tangencial $\boldsymbol{\varepsilon}_{y}$.
- La tendencia de la deformación radial y tangencial es parábola creciente con el espesor de la capa rodadura del esquema estructural. En la rasante la deformación es de compresión. Pero en la base de la capa asfáltica pasa a ser tracción, Dicho comportamiento es esencial para análisis de criterio y control de fatiga de un modelo estructural del pavimento.
- La tendencia de la *ɛ*_x, *ɛ*_y, es parabólica creciente hasta la rasante de la sub base granular. Indica que se presentan mayores deformaciones en dicha capa. La deformación es a tracción.
- La tendencia de la $\boldsymbol{\varepsilon}_{x}, \boldsymbol{\varepsilon}_{y}$, es creciente hasta 1/4 de la sub base y parabólica decreciente hasta 3/4 del espesor de sub base. La deformación es a tracción.
- La tendencia de la $\boldsymbol{\varepsilon}_{x,} \boldsymbol{\varepsilon}_{y}$, es parábola decreciente en la subrasante del esquema estructural.

El comportamiento de las deformaciones radiales y tangenciales de acuerdo el modelo estructural es iguales, así como representa la parábola color azul de acuerdo los valores (Ver tabla 53 y gráfica figura 129). Los análisis de las deformaciones radiales y tangenciales en los cuatro puntos de estudio son similares, (progresivas 23+275, 23+750, 24+475 y 24+850 Km.). Se puede apreciar los valores en las tablas 58, 63, 68 y las gráficas en las figuras 133, 137, 141.

D (7	G	Deformaciones		
Punto	Z, m	Capa	Bisar (µStrain)		
1	0	1	-4,291E+02	-0,0004291	
2	0,05	1	1,931E+02	0,0001931	
3	0,20	2	3,878E+02	0,0003878	
4	0,35	3	3,682E+02	0,0003682	
5	0,3501	4	3,681E+02	0,0003681	
6	0,65	4	1,485E+02	0,0001485	
7	1,00	4	7,504E+01	0,00007504	

Valores de deformaciones	radiales	E X,	tangenciales e y	
				_

Nota: Figura 92. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva: 23+275 Km. – Eje X)

Figura 129. Variación de la deformación radial $\boldsymbol{\varepsilon}_x$, tangencial $\boldsymbol{\varepsilon}_y$, en función de la profundidad, Z. (Progresiva: 23+275 Km. – Eje X)

- d. Deformación vertical $\boldsymbol{\varepsilon}_{z}$.
- La tendencia de la deformación vertical es parábola decreciente en el espesor de la capa rodadura del esquema estructural. En la rasante la deformación es de tracción y pasa a ser de compresión en función de la profundidad. Dicho comportamiento es esencial para análisis de criterio y control del ahuellamiento de un modelo estructural del pavimento.
- La tendencia de la ε_z, es parabólica decreciente hasta la rasante de la capa de sub base granular. Tiende a ser menor a medida se aleje del centro de simetría del sistema el esfuerzo es a compresión.
- La tendencia de la $\boldsymbol{\varepsilon}_{z}$, en la capa de subbase es creciente hasta la superficie de la subrasante, dicho esfuerzo es a compresión.
- La tendencia de la $\boldsymbol{\varepsilon}_{z}$, en la subrasante es parábola decreciente en la superficie y en todo espesor de la subrasante es creciente, cuyo esfuerzo es a compresión del esquema estructural.

Por consiguiente, el comportamiento de los esfuerzos verticales, representa la parábola color rojo de acuerdo los valores de la tabla 54 y la gráfica en la figura 130. Los análisis de los esfuerzos verticales en los cuatro segmentos de estudio son similares (progresivas 23+275, 23+750, 24+475 y 24+850 Km.). Se puede apreciar los valores en las tablas 59, 64, 69 y las gráficas en las figuras 134, 138, 142.

	7	G	Deformaciones			
Punto	Z, m	Сара	Bisar (µStrain)			
1	0	1	2,105E+02	0,0002105		
2	0,05	1	-4,394E+02	-0,0004394		
3	0,20	2	-8,199E+02	-0,0008199		
4	0,35	3	-6,456E+02	-0,0006456		
5	0,3501	4	-8,287E+02	-0,0008287		
6	0,65	4	-3,330E+02	-0,0003330		
7	1,00	4	-1,676E+02	-0,0001676		

Valores de deformaciones verticales $\boldsymbol{\varepsilon}_{Z}$

Nota: Figura 92. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva: 23+275 Km. – Eje X)

Figura 130. Variación de la deformación vertical $\boldsymbol{\varepsilon}_z$, en función de la profundidad, Z. (Progresiva: 23+275 Km. – Eje X)

e. Deflexión vertical Δ_z .

- La tendencia de la deflexión vertical, es parábola creciente hasta la mitad del espesor de la capa rodadura y decreciente hasta la interface con la capa de base granular.
- La tendencia de la Δ_z , en la capa de base granular es parábola decreciente hasta la interface con subbase granular.
- La tendencia de la Δ_z , en la capa subbase granular es parábola decreciente en todo su espesor.
- Es decir, la disipación del paquete estructural es de 0,2671 mm (37,73%).
- La tendencia de Δ_{z} , en la sub rasante la parábola decrece lentamente, la deflexión disipa el 0,4407 mm (62,27%).

El comportamiento de la deflexión del modelo estructural se aprecia en la tabla 55 y la figura 131.

Tabla 55

D (7	C	Deflexiones		
Punto	Z, m	Capa	Bisar (µm)	mm	
1	0	1	7,078E+02	0,7078	
2	0,05	1	7,015E+02	0,7015	
3	0,20	2	5,476E+02	0,5476	
4	0,35	3	4,407E+02	0,4407	
5	0,3501	4	4,406E+02	0,4406	
6	0,65	4	2,835E+02	0,2835	
7	1,00	4	2,010E+02	0,2010	

Valores de deflexiones verticales Δz

Figura 131. Perfil de deflexión en función de la profundidad, Z. (Progresiva: 23+275 Km. – Eje X)

Segundo punto de estudio: Progresiva 23+750 Km. Eje X.

f. Esfuerzos radial σ_x , tangencial σ_y .

Tabla 56

Valores de esfuerzos radiales σ x, tangenciales σ y

Dumés	7	Carro	Esfuerzos	
Punto	Ζ, Ш	Capa	Bisar (MPa)	(Kg/cm ²)
1	0	1	-1,178E+00	-12,0122
2	0,05	1	1,375E-01	1,4021
3	0,20	2	6,975E-02	0,7112
4	0,35	3	7,818E-02	0,7972
5	0,3501	4	-3,051E-03	-0,0311
6	0,65	4	-7,580E-04	-0,0077
7	1,00	4	-2,094E-04	-0,0021

- g. Esfuerzos vertical σ_z .
- La tendencia del σ_z , es de parábola decreciente en el espesor de la capa rodadura del modelo estructural.
- El máximo del σ_z , corresponde al punto de la rasante del pavimento y su capacidad es similar a la presión de contacto de 549,18 kPa, (0,549 MPa), así como se aprecia en la tabla 57.
- Para la estructura en estudio, en progresiva 23+750 km, el esfuerzo vertical en la capa asfáltica es parábola creciente y se disipa el 7,90%.
- La tendencia del σ_z , es parábola creciente, el 55,54% disipa en base granular.
- La tendencia del σ_z , es parábola creciente, el 22,45% disipa en la sub base.
- La tendencia del σ_z, es parábola creciente, el 14,11% disipa en la subrasante.
 Se puede observar la parábola color rojo de la figura 132.

Dumto	7	Cana	Esfuer	rzos
Punto	Ζ, Ш	Capa	Bisar (MPa)	(Kg/cm ²)
1	0	1	-5,492E-01	-5,6003
2	0,05	1	-5,058E-01	-5,1577
3	0,20	2	-2,008E-01	-2,0476
4	0,35	3	-7,747E-02	-0,7900
5	0,3501	4	-7,744E-02	-0,7897
6	0,65	4	-3,042E-02	-0,3102
7	1,00	4	-1,500E-02	-0,1530

Valores de esfuerzos verticales σ z.

Figura 132. Variación del esfuerzo radial σ_x , tangencial $\sigma_y y$ vertical σ_z en función de la profundidad, Z. (Progresiva: 23+750 Km.- Eje X)

h. Deformación radial $\boldsymbol{\varepsilon}_{x}$ tangencial $\boldsymbol{\varepsilon}_{y}$.

Tabla 58

Valores de deformaciones radiales $\boldsymbol{\varepsilon}$ x, tangenciales $\boldsymbol{\varepsilon}$ y

	-	G	Deforma	aciones
Punto	Z, m	Сара	Bisar (µStrain)	
1	0	1	-4,217E+02	-0,0004217
2	0,05	1	1,959E+02	0,0001959
3	0,20	2	3,851E+02	0,0003851
4	0,35	3	3,493E+02	0,0003493
5	0,3501	4	3,492E+02	0,0003492
6	0,65	4	1,397E+02	0,0001397
7	1,00	4	6,986E+01	0,00006986

Figura 133. Variación de la deformación radial $\boldsymbol{\varepsilon}_x$, tangencial $\boldsymbol{\varepsilon}_y$, en función de la profundidad, Z. (Progresiva: 23+750 Km.- Eje X)

i. Deformación vertical $\boldsymbol{\varepsilon}_{z}$.

Tabla 59

Valores de deformaciones verticales $\boldsymbol{\varepsilon}_{Z}$

D (-	a	Deforma	ciones
Punto	Z, m	Сара	Bisar (µStrain)	
1	0	1	2,025E+02	0,0002025
2	0,05	1	-4,427E+02	-0,0004427
3	0,20	2	-8,221E+02	-0,0008221
4	0,35	3	-6,279E+02	-0,0006279
5	0,3501	4	-7,863E+02	-0,0007863
6	0,65	4	-3,131E+02	-0,0003131
7	1,00	4	-1,559E+02	-0,0001559

Deformaciones Verticales &z

Figura 134. Variación de la deformación vertical $\boldsymbol{\varepsilon}_{z}$, en función de la profundidad, Z. (Progresiva: 23+750 Km.- Eje X)

- *j.* Deflexión vertical Δ_{z} .
- La tendencia de la deflexión vertical, es parábola creciente hasta la mitad del espesor de la capa rodadura y decreciente hasta la interface con la capa de base granular.
- La tendencia de la Δ_z , en la capa de base granular es parábola decreciente hasta la interface con subbase granular.
- La tendencia de la Δ_z , en la capa subbase granular es parábola decreciente en todo su espesor.
- Es decir, la disipación del paquete estructural es de 0,2674 mm (39,48%).

- La tendencia de Δ_z , en la sub rasante la parábola decrece lentamente, la deflexión disipa el 0,4099 mm (60,52%).

El comportamiento de la deflexión del modelo estructural se aprecia en la tabla 60 y la figura 135.

Tabla 60

Punto	7 m	Cana	Deflexiones	
	<i>2</i>), III	Capa	Bisar (µm)	mm
1	0	1	6,773E+02	0,6773
2	0,05	1	6,707E+02	0,6707
3	0,20	2	5,163E+02	0,5163
4	0,35	3	4,099E+02	0,4099
5	0,3501	4	4,098+02	0,4098
6	0,65	4	2,613E+02	0,2613
7	1,00	4	1,841E+02	0,1841

Valores de deflexiones verticales Δz

Figura 135. Perfil de deflexión en función de la profundidad, Z. (Progresiva: 23+750 Km.- Eje X)

Tercer punto de estudio: Progresiva 24+475 Km. Eje X

k. Esfuerzos radial σ_{x} , tangencial σ_{y} .

Tabla 61

Valores de esfuerzos radiales σ x, tangenciales σ y.

	7	G	Esfuerzos		
Punto Z, m		Capa	Bisar (MPa)	(Kg/cm ²)	
1	0	1	-1,211E+00	-12,3487	
2	0,05	1	1,253E-01	1,2777	
3	0,20	2	7,622E-02	0,7772	
4	0,35	3	9,810E-02	1,0003	
5	0,3501	4	-2,734E-03	-0,0279	
6	0,65	4	-8,450E-04	-0,0086	
7	1,00	4	-2,705E-04	-0,0028	
1	1,00	4	-2,703E-04	-0,0028	

Nota: Figura 102. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva: 24+475 Km.- Eje X)

l. Esfuerzos vertical σ_z .

- La tendencia del σ_z , es de parábola decreciente en el espesor de la capa asfáltica del modelo estructural.
- El máximo del σ_z , corresponde al punto de la rasante del pavimento y su capacidad es similar a la presión de contacto de 549,18 kPa, (0,549 MPa), así como se aprecia en la tabla 62.
- Para la estructura en estudio, en progresiva 24+475 km, el esfuerzo vertical en la capa asfáltica es parábola creciente y se disipa el 7,90%.
- La tendencia del σ_z , es parábola creciente, el 56,65% disipa en base granular.

- La tendencia del σ_z , es parábola creciente, el 22,72% disipa en la sub base.
- La tendencia del σ_z , es parábola creciente, el 12,73% disipa en la subrasante.

Se puede observar la parábola color rojo de la figura 136.

Tabla 62

Valores de esfuerzos verticales σ z.

D (7	G	Esfue	rzos
Punto	Z, m	Сара	Bisar (MPa)	(Kg/cm ²)
1	0	1	-5,492E-01	-5,6003
2	0,05	1	-5,058E-01	-5,1475
3	0,20	2	-1,947E-01	-1,9854
4	0,35	3	-6,999E-02	-0,7137
5	0,3501	4	-6,996E-02	-0,7134
6	0,65	4	-2,818E-02	-0,2874
7	1,00	4	-1,422E-02	-0,1450

Figura 136. Variación del esfuerzo radial σ_x , tangencial $\sigma_y y$ vertical σ_z en función de la profundidad, Z. (Progresiva: 24+475 Km.- Eje X)

m. Deformación radial $\boldsymbol{\varepsilon}_{x}$ tangencial $\boldsymbol{\varepsilon}_{y}$.

Tabla 63

Va	lores d	de	defor	rmaciones	radiales	EX,	tangenciales	$\mathcal{E}V$
						,		

Punto	7 m	7 m Cana	Deformaciones	
1 unto	<i>L</i> , m	Capa	Bisar (µStrain)	
1	0	1	-4,374E+02	-0,0004374
2	0,05	1	1,898E+02	0,0001898
3	0,20	2	3,910E+02	0,0003910
4	0,35	3	3,895E+02	0,0003895
5	0,3501	4	3,893E+02	0,0003893
6	0,65	4	1,587E+02	0,0001587
7	1,00	4	8,116E+01	0,00008116

Nota: Figura 102. Resultados (reporte de salida) del programa BISAR 3.0 (Progresiva: 24+475 Km.- Eje X)

Deformaciones Radiales Ex, Tangenciales Ey por Tracción

Figura 137. Variación de la deformación radial $\boldsymbol{\varepsilon}_x$, tangencial $\boldsymbol{\varepsilon}_y$, en función de la profundidad, Z. (Progresiva: 24+475 Km.- Eje X)

n. Deformación vertical $\boldsymbol{\varepsilon}_{z}$.

Tabla 64

Valores de deformaciones verticales $\boldsymbol{\varepsilon}_{z}$

D (7	C	Deformaciones	
Punto	Z, m Capa		Bisar (µStrain)	
1	0	1	2,195E+02	0,0002195
2	0,05	1	-4,357E+02	-0,0004357
3	0,20	2	-8,178E+02	-0,0008178
4	0,35	3	-6,658E+02	-0,0006658
5	0,3501	4	-8,766E+02	-0,0008766
6	0,65	4	-3,561E+02	-0,0003561
7	1,00	4	-1,815E+02	-0,0001815

Nota: Figura 102. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva: 24+475 Km.- Eje X).

Deformaciones Verticales Ez

Figura 138. Variación de la deformación vertical $\boldsymbol{\varepsilon}_z$, en función de la profundidad, Z. (Progresiva: 24+475 Km.- Eje X)

- o. Deflexión vertical Δ_{z} .
- La tendencia de la deflexión vertical, es parábola creciente hasta la mitad del espesor de la capa rodadura y decreciente hasta la interface con la capa de base granular.
- La tendencia de la Δ_z , en la capa de base granular es parábola decreciente hasta la interface con subbase granular.
- La tendencia de la Δ_z , en la capa subbase granular es parábola decreciente en todo su espesor.
- Es decir, la disipación del paquete estructural es de 0,2669 mm (35,87%).
- La tendencia de Δ_z , en la sub rasante la parábola decrece lentamente, la deflexión disipa el 0,4772 mm (64,13%).

El comportamiento de la deflexión del modelo estructural se aprecia en la tabla 65 y la figura 139.

Tabla 65

Dunto	7 m	Cana	Deflexi	ones
runto	Ζ, Ш	Capa	Bisar (µm)	mm
1	0	1	7,441E+02	0,7441
2	0,05	1	7,382E+02	0,7382
3	0,20	2	5,848E+02	0,5848
4	0,35	3	4,772E+02	0,4772
5	0,3501	4	4,772+02	0,4772
6	0,65	4	3,103E+02	0,3103
7	1,00	4	2,215E+02	0,2215

Valores de deflexiones verticales Δz

Figura 139. Perfil de deflexión en función de la profundidad, Z. (Progresiva: 24+475 Km.- Eje X)

Cuarto punto de estudio: Progresiva 24+850 Km. Eje X.

p. Esfuerzos radial σ_x , tangencial σ_y .

Tabla 66

Valores de esfuerzos radiales σ x, tangenciales σ y.

Dunto	7 m	Capa	Esfuerzos		
1 unto	Ζ, 111		Bisar (MPa)	(Kg/cm ²)	
1	0	1	-1,185E+00	-12,0836	
2	0,05	1	1,351E-01	1,3776	
3	0,20	2	7,105E-02	0,7245	
4	0,35	3	8,224E-02	0,8386	
5	0,3501	4	-2,972E-03	-0,0303	
6	0,65	4	-7,745E-04	-0,0079	
7	1,00	4	-2,216E-04	-0,0023	

- q. Esfuerzos vertical σ_z .
- La tendencia del σ_z , es de parábola decreciente en el espesor de la capa asfáltica del modelo estructural.
- El máximo del σ_z , corresponde al punto de la rasante del pavimento y su capacidad es similar a la presión de contacto de 549,18 kPa, (0,549 MPa), así como se aprecia en la tabla 67.
- Para la estructura en estudio en progresiva 24+850 km, el esfuerzo vertical en la capa asfáltica es parábola creciente y se disipa el 7,94%.
- La tendencia del σ_z , es parábola creciente, el 55,73% disipa en base granular.
- La tendencia del σ_z , es parábola creciente, el 22,51% disipa en la sub base.
- La tendencia del σ_z, es parábola creciente, el 13,82% disipa en la subrasante.
 Se puede observar la parábola color rojo de la figura 140.

Punto	Z, m	Capa	Esfuerzos	
			Bisar (MPa)	(Kg/cm ²)
1	0	1	-5,492E-01	-5,6003
2	0,05	1	-5,056E-01	-5,3596
3	0,20	2	-1,995E-01	-2,0343
4	0,35	3	-7,592E-02	-0,7742
5	0,3501	4	-7,589E-02	-0,7739
6	0,65	4	-2,996E-02	-0,3055
7	1,00	4	-1,484E-02	-0,1513

Valores de esfuerzos verticales σ z.

Figura 140. Variación del esfuerzo radial σ_x , tangencial $\sigma_y y$ vertical σ_z en función de la profundidad, Z. (Progresiva: 24+850 Km. – Eje X)

r. Deformación radial $\boldsymbol{\varepsilon}_{x}$ tangencial $\boldsymbol{\varepsilon}_{y}$.

Tabla 68

Valores de deformaciones radiales $\boldsymbol{\varepsilon}$ x, tangenciales $\boldsymbol{\varepsilon}$ y

Punto	7	Capa	Deformaciones	
	Z, m		Bisar (µStrain)	
1	0	1	-4,249E+02	-0,0004249
2	0,05	1	1,947E+02	0,0001947
3	0,20	2	3,863E+02	0,0003863
4	0,35	3	3,575E+02	0,0003575
5	0,3501	4	3,573E+02	0,0003573
6	0,65	4	1,435E+02	0,0001435
7	1,00	4	7,206E+01	0,00007206

Deformaciones Radiales &x, Tangenciales &y por Tracción

Figura 141. Variación de la deformación radial $\boldsymbol{\varepsilon}_x$, tangencial $\boldsymbol{\varepsilon}_y$, en función de la profundidad, Z. (Progresiva: 24+850 Km. – Eje X)

s. Deformación vertical $\boldsymbol{\varepsilon}_{z}$.

Tabla 69

Valores de deformaciones verticales $\boldsymbol{\varepsilon}_{Z}$

Punto Z, m	-	Capa	Deformaciones	
	Z, m		Bisar (µStrain)	
1	0	1	2,059E+02	0,0002059
2	0,05	1	-4,413E+02	-0,0004413
3	0,20	2	-8,211E+02	-0,0008211
4	0,35	3	-6,355E+02	-0,0006355
5	0,3501	4	-8,045E+02	-0,0008045
6	0,65	4	-3,216E+02	-0,0003216
7	1,00	4	-1,609E+02	-0,0001609

Deformaciones Verticales &z

Figura 142. Variación de la deformación vertical $\boldsymbol{\varepsilon}_{z}$, en función de la profundidad, Z. (Progresiva: 24+850 Km. – Eje X)

- t. Deflexión vertical Δ_{z} .
- La tendencia de la deflexión vertical, es parábola creciente hasta la mitad del espesor de la capa rodadura y decreciente hasta la interface con la capa de base granular.
- La tendencia de la Δ_z , en la capa de base granular es parábola decreciente hasta la interface con subbase granular.
- La tendencia de la Δ_z , en la capa subbase granular es parábola decreciente en todo su espesor.
- Es decir, la disipación del paquete estructural es de 0,2673 mm (38,73%).
- La tendencia de Δ_{z} , en la sub rasante la parábola decrece lentamente, la deflexión disipa el 0,4229 mm (61,27%).

El comportamiento de la deflexión del modelo estructural se aprecia en la tabla 70 y la figura 143.

Tabla 70

Valores de deflexiones	verticales Δz
------------------------	-----------------------

Punto	Z, m	Cana	Deflexiones	
		Capa	Bisar (µm)	mm
1	0	1	6,902E+02	0,6902
2	0,05	1	6,838E+02	0,6838
3	0,20	2	5,295E+02	0,5295
4	0,35	3	4,229E+02	0,4229
5	0,3501	4	4,229+02	0,4229
6	0,65	4	2,707E+02	0,2707
7	1,00	4	1,912E+02	0,1912

Figura 143. Perfil de deflexión en función de la profundidad, Z. (Progresiva: 24+850 Km.-Eje X).

4.1.5.2 Vista frontal (Eje en Y).

Primer punto de estudio: Progresiva 23+275 Km. Eje Y.

- a. Esfuerzos radial σ_x .
- La tendencia del σ_x , es parábola decreciente en la superficie de capa rodadura y luego cambia a ser creciente, el esfuerzo radial es a compresión y en 2/3 de la capa por el eje de simetría pasa a ser a esfuerzo a tracción.
- La tendencia del σ_x , es creciente hasta 1/4 del espesor de base granular y 3/4 es una parábola decreciente hasta la base de dicha capa y los esfuerzos son a tracción.
- La tendencia del σ_{x} , es creciente en el espesor de sub base y los esfuerzos son a tracción.
- En la subrsante el esfuerzo radial es de compresión y tiende a ser muy pequeñas cercanas a cero, linealmente decreciente a medida que se incremente la profundidad según el modelo estructural.

Entonces, el comportamiento del esfuerzo radial representa la parábola color azul de acuerdo los valores de la tabla 71 y la gráfica en la figura 144. Los análisis de los esfuerzos radiales en los cuatro segmentos son similares (progresivas 23+275, 23+750, 24+475 y 24+850 Km.). Se puede apreciar los valores en las tablas 78, 85, 92 y las gráficas en las figuras 149, 154, 159.

Punto	Z, m Cap	Cana	Deflexiones	
		Capa	Bisar (µm)	mm
1	0,00	1	-4,601E-01	-4,6917
2	0,00	1	-1,198E+00	-12,2161
3	0,05	1	2,933E-01	2,9908
4	0,20	2	5,854E-02	0,5969
5	0,35	3	7,163E-02	0,7304
6	0,3501	4	-1,796E-03	-0,0183
7	0,65	4	-6,644E-04	-0,0068
8	1,00	4	-2,067E-04	-0,0021

Valores de esfuerzos radiales σ x,

Nota: Figura 112. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva: 23+275 Km. – Eje Y)

b. Esfuerzos tangencial σ_{y} .

- La tendencia del σ_{y} , es parábola decreciente en la rasante de capa rodadura. Los esfuerzos radiales son a tracción y se transforma en esfuerzos a compresión en superficie de dicha capa y en 2/3 de la misma capa, por el eje de simetría pasa a ser a esfuerzo a tracción.
- La tendencia del σ_y , es creciente hasta 1/4 del espesor de base granular y 3/4 es una parábola decreciente hasta la base de dicha capa y los esfuerzos son a tracción.
- La tendencia del σ_y , es decreciente hasta 1/4 de la capa sub base con esfuerzos en compresión y en 3/4 de la capa es creciente y los esfuerzos tangenciales son a tracción.

 En la subrsante el esfuerzo tangencial es de compresión y tiende a ser muy pequeñas cercanas a cero, linealmente decreciente a medida que se incremente la profundidad según el modelo estructural.

De modo que, el comportamiento del esfuerzo tangencial es aleatorio así como representa la parábola color verde de acuerdo los valores de la tabla 72 y la gráfica en la figura 144. Los análisis de los esfuerzos tangenciales en los cuatro segmentos son similares (progresivas 23+275, 23+750, 24+475 y 24+850 Km.). Se puede apreciar los valores en las tablas 79, 86, 93 y las gráficas en las figuras 149, 154, 159.

Tabla 72

Punto	Z, m	Сара	Esfuerzos	
			Bisar (MPa)	(Kg/cm ²)
1	0,00	1	1,227E-01	1,2512
2	0,00	1	-1,106E+00	-11,2780
3	0,05	1	2,648E-01	2,7002
4	0,20	2	1,467E-03	0,0150
5	0,35	3	5,182E-02	0,5284
6	0,3501	4	-9,169E-03	-0,0935
7	0,65	4	-1,787E-03	-0,0182
8	1,00	4	-4,711E-04	-0,0048

Valores de esfuerzos tangenciales σy .

Nota: Figura 112. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva: 23+275 Km. – Eje Y)

c. Esfuerzos vertical σ_z .

La tendencia del σ_z , es de parábola decreciente inicia del eje de la simetría y pasa a ser creciente en el espesor de la capa asfáltica del modelo estructural. El esfuerzo es a compresión.

- El máximo del σ_z , corresponde al punto de la rasante del pavimento y su capacidad es similar a la presión de contacto de 549,18 kPa, (0,549 MPa), así como se aprecia en la tabla 73.
- Para la estructura en estudio en progresiva 23+275 km, el esfuerzo vertical en la capa asfáltica disipa el 19,28%.
- La tendencia del σ_z , es parábola creciente, el 60,39% disipa en base granular.
- La tendencia del σ_z , es parábola creciente, el 9,68% disipa en la sub base.
- La tendencia del σ_z , es parábola creciente, el 10,65% disipa en la subrasante.

Se puede observar los valores en la tabla 73 y la gráfica de parábola color rojo de la figura 144.

Tabla 73

Punto	Z, m	a	Esfuerzos	
		Capa	Bisar (MPa)	(Kg/cm ²)
1	0,00	1	0,000E+00	0,0000
2	0,00	1	-5,492E-01	-5,6003
3	0,05	1	-4,423E-01	-4,5102
4	0,20	2	-1,107E-01	-1,1288
5	0,35	3	-5,850E-02	-0,5965
6	0,3501	4	-5,848E-02	-0,5963
7	0,65	4	-2,703E-02	-0,2756
8	1,00	4	-1,408E-02	-0,1436

Valores de esfuerzos verticales σ z.

Figura 144. Variación del esfuerzo radial σ_x , tangencial σ_y y vertical σ_z en función de la profundidad, Z. (Progresiva: 23+275 Km. – Eje Y)

- *d.* Deformación radial $\boldsymbol{\varepsilon}_{x}$.
- La tendencia de la deformación radial es parábola creciente con el espesor de la capa rodadura del esquema estructural. En la rasante la deformación es de compresión. Pero en la mitad de la capa asfáltica pasa a ser tracción, Dicho comportamiento es esencial para análisis de criterio y control de fatiga de un modelo estructural del pavimento.
- La tendencia de la $\boldsymbol{\varepsilon}_{x,}$ es parabólica creciente hasta la rasante de la sub base granular. La deformación es a tracción.

- La tendencia de la $\boldsymbol{\varepsilon}_{x}$, es creciente hasta la rasante de la sub base, la máxima deformación radial se presenta en el contacto entre la sub base granular y la subrsante.
- La tendencia de la ε_{x} , es parábola decreciente en la subrasante, dicha deformación se reduce notablemente en su magnitud a medida que se incremente la profundidad.

Por consiguiente, el comportamiento de las deformaciones radiales es de acuerdo el modelo estructural representa los valores de la tabla 74 y la gráfica en la figura 145. Los análisis de las deformaciones radiales en los cuatro segmentos son similares (progresivas 23+275, 23+750, 24+475 y 24+850 Km.). se puede apreciar los valores en las tablas 81, 88, 95 y las gráficas en las figuras 150, 155, 160.

Tabla 74

Punto	Z, m	Capa	Deformaciones	
			Bisar (µStrain)	
1	0,00	1	-3,699E+02	-0,0003699
2	0,00	1	-4,548E+02	0,0004548
3	0,05	1	2,614E+02	0,0002614
4	0,20	2	3,223E+02	0,0003223
5	0,35	3	3,332E+02	0,0003332
6	0,3501	4	3,331E+02	0,0003331
7	0,65	4	1,431E+02	0,0001431
8	1,00	4	7,373E+01	0,00007373

Valores de deformaciones radiales $\boldsymbol{\varepsilon} x$

Figura 145. Variación de la deformación radial $\boldsymbol{\varepsilon}_x$, en función de la profundidad, Z. (Progresiva: 23+275 Km. – Eje Y)

- e. Deformación tangencial $\boldsymbol{\varepsilon}_{y}$.
- La tendencia de la deformación tangencial es parábola lineal decreciente en la superficie de la capa rodadura del esquema estructural, dicha deformación es de tracción y en la misma superficie se transforma a parábola creciente y pasa ser a compresión. Pero en 1/3 de la capa asfáltica pasa a ser tracción.
- La tendencia de la ε_{x} , es parabólica creciente al inicio y luego pasa ser decreciente hasta el interface de la base granular y sub base granular. La deformación tangencial es a tracción. La máxima deformación tangencial se presenta en cuya capa.

- La tendencia de la ε_x , es creciente hasta el interface de la sub base granular y subrasante, la máxima deformación radial se presenta en el contacto entre la sub base granular y la subrsante.
- La tendencia de la ε_{x} , es parábola decreciente en la subrasante, dicha deformación se reduce notablemente en su magnitud a medida que se incremente la profundidad.

Mientras tanto, el comportamiento de las deformaciones tangenciales es de acuerdo el modelo estructural, representa los valores de la tabla 75 y la gráfica en la figura 146. Los análisis de las deformaciones tangenciales en los cuatro segmentos son similares (progresivas 23+275, 23+750, 24+475 y 24+850 Km.). Se puede apreciar los valores en las tablas 82, 89, 96 y las gráficas en las figuras 151, 156, 161.

Tabla 75

Punto	-	a	Deformaciones			
	Z, m	Сара	Bisar (µStrain)			
1	0,00	1	2,086E+02	-0,0002086		
2	0,00	1	-3,634E+02	0,0003634		
3	0,05	1	2,330E+02	0,0002330		
4	0,20	2	6,763E+01	0,00006763		
5	0,35	3	2,088E+02	0,0002088		
6	0,3501	4	2,088E+02	0,0002088		
7	0,65	4	1,241E+02	0,00001241		
8	1,00	4	6,927E+01	0,00006927		

Valores de deformaciones tangenciales $\boldsymbol{\varepsilon} \boldsymbol{y}$

Figura 146. Variación de la deformación tangencial $\boldsymbol{\varepsilon}_{y}$, en función de la profundidad, Z. (Progresiva: 23+275 Km. – Eje Y)

- f. Deformación vertical $\boldsymbol{\varepsilon}_{z}$.
- La tendencia de la deformación vertical es parábola decreciente en el espesor de la capa rodadura del esquema estructural. En la rasante la deformación es a tracción y pasa a ser de compresión en función de la profundidad. Dicho comportamiento es esencial para análisis de criterio y control del ahuellamiento de un modelo estructural del pavimento.
- La tendencia de la $\boldsymbol{\varepsilon}_{z}$, es parabólica decreciente al inicio y luego pasa ser creciente hasta el interface de la base granular y sub base granular. La deformación vertical es a compresión.
- La tendencia de la ε_{z} , es decreciente hasta el interface de la sub base granular y subrasante. Dicha deformación es a compresión.

 La tendencia de la *ε*_z, es parábola creciente en la subrasante, dicha deformación se acerca hacia el eje de simetría notablemente en su magnitud a medida que se incremente la profundidad.

En paralelo, el comportamiento de las deformaciones verticales es de acuerdo el modelo estructural que representa los valores de la tabla 76 y la gráfica en la figura 147. Los análisis de las deformaciones verticales en los cuatro puntos son similares (progresivas 23+275, 23+750, 24+475 y 24+850 Km.). Se puede ver los valores en las tablas 83, 90, 97 y las gráficas en las figuras 152, 157, 162.

Tabla 76

Valores de deformaciones verticales $\boldsymbol{\varepsilon}_{Z}$

	7	C	Deformaciones			
Punto	Z, m Capa	Bisar (µStrain)				
1	0,00	1	8,684E+01	0,00008684		
2	0,00	1	1,889E+02	-0,0001889		
3	0,05	1	-4,688E+02	-0,0004688		
4	0,20	2	-4,329E+02	-0,0004329		
5	0,35	3	-4,838E+02	-0,0004838		
6	0,3501	4	-6,226E+02	-0,0006226		
7	0,65	4	-3,015E+02	-0,0003015		
8	1,00	4	-1,602E+02	-0,0001602		

Figura 147. Variación de la deformación vertical $\boldsymbol{\varepsilon}_{z}$, en función de la profundidad, Z. (Progresiva: 23+275 Km. – Eje Y).

- g. Deflexión vertical Δ_z .
- La tendencia de la deflexión vertical es parábola creciente en la superficie de la capa rodadura y decreciente hasta la interface con la capa de base granular.
- La tendencia de la Δ_z, en la capa de base granular es parábola decreciente hasta la interface con subbase granular. Por lo que se aprecia la disminución de la deflexión.
- La tendencia de la Δ_z , en la capa subbase granular es parábola decreciente en todo su espesor.
- Es decir, la disipación del paquete estructural es de 0.1811 mm (30.86%).
- La tendencia de Δ_{z} , en la subrasante la parábola decrece lentamente, la deflexión disipa el 0.4058 mm (69.14%). El comportamiento de la deflexión

del modelo estructural es según los valores de la tabla 77 y la gráfica se aprecia en la figura 148.

Tabla 77

Valores de deflexiones verticales Δz

Punto	7	Cana	Deflexiones		
	Z, m	Capa	Bisar (µm)	mm	
1	0,00	1	5,202E+02	0,5202	
2	0,00	1	5,869E+02	0,5869	
3	0,05	1	5,791E+02	0,5791	
4	0,20	2	4,759E+02	0,4759	
5	0,35	3	4,058E+02	0,4058	
6	0,3501	4	4,058E+02	0,4058	
7	0,65	4	2,748E+02	0,2748	
8	1,00	4	1,979E+02	0,1979	

Figura 148. Perfil de deflexión en función de la profundidad, Z. (Progresiva: 23+275 Km.-Eje Y)

Segundo punto de estudio: Progresiva 23+750 Km. Eje Y.

h. Esfuerzos radial σ_x .

Tabla 78

Deresta	7	Cama	Esfuerzos	
Punto	Z, m	Capa	Bisar (MPa)	(Kg/cm ²)
1	0,00	1	-4,459E-01	-4,5469
2	0,00	1	-1,184E+00	-12,0734
3	0,05	1	2,985E-01	3,0438
94	0,20	2	5,588E-02	0,5698
5	0,35	3	6,391E-02	0,6517
6	0,3501	4	-1,854E-03	-0,0189
7	0,65	4	-6,163E-04	-0,0063
8	1,00	4	-1,772E-04	-0,0018

Valores de esfuerzos radiales σ_x

Nota: Figura 117. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva: 23+750 Km. – Eje Y)

i. Esfuerzos tangencial σ_{y} .

Tabla 79

Valores de esfuerzos tangenciales σy

Punto	7	C	Esfuerzos	
	Z, m	Capa	Bisar (MPa)	(Kg/cm ²)
1	0,00	1	1,358E-01	1,3848
2	0,00	1	-1,094E+00	-11,1556
3	0,05	1	2,695E-01	2,7481
4	0,20	2	-1,266E-03	-0,0129
5	0,35	3	4,485E-02	0,4573
б	0,3501	4	-9,684E-03	-0,0987
7	0,65	4	-1,807E-03	-0,0184
8	1,00	4	-4,552E-04	-0,0046

j. Esfuerzos vertical σ_z .

- La tendencia del σ_z , es de parábola decreciente inicia del eje de la simetría y pasa a ser creciente en el espesor de la capa asfáltica del modelo estructural. El esfuerzo es a compresión.
- El máximo del σ_z , corresponde al punto de la rasante del pavimento y su capacidad es similar a la presión de contacto de 549.18 kPa, (0.549 MPa), así como se aprecia en la tabla 80.
- Para la estructura en estudio, en progresiva 23+750 km, el esfuerzo vertical en la capa asfáltica disipa el 19.41%.
- La tendencia del σ_z , es parábola creciente, el 60.05% disipa en base granular.
- La tendencia del σ_z , es parábola creciente, el 9.41% disipa en la sub base.
- La tendencia del σ_z, es parábola creciente, el 11.13% disipa en la subrasante.
 Se puede observar los valores en la tabla 80 y la gráfica de parábola color rojo de la figura 149.

Tabla 80

Punto	7	Como	Esfuerzos	
	Ζ, Μ	Capa	Bisar (MPa)	(Kg/cm ²)
1	0,00	1	0,000E+00	0,0000
2	0,00	1	-5,492E-01	-5,6003
3	0,05	1	-4,426E-01	-4,5132
4	0,20	2	-1,128E-01	-1,1502
5	0,35	3	-6,107E-02	-0,6227
6	0,3501	4	-6,105E-02	-0,6225
7	0,65	4	-2,796E-02	-0,2851
8	1,00	4	-1,442E-02	-0,1470

Valores de esfuerzos verticales σ z.

Figura 149. Variación del esfuerzo radial σ_x , tangencial σ_y y vertical σ_z en función de la profundidad, Z. (Progresiva: 23+750 Km. – Eje Y)

k. Deformación radial $\boldsymbol{\varepsilon}_{x.}$

Tabla 81

Valores de deformaciones radiales $\boldsymbol{\varepsilon} x$

Punto	7	G	Deformaciones		
	Z, m	Сара	Bisar (µStrain)		
1	0,00	1	-3,628E+02	-0,0003628	
2	0,00	1	-4,481E+02	0,0004481	
3	0,05	1	2,640E+02	0,0002640	
4	0,20	2	3,195E+02	0,0003195	
5	0,35	3	3,157E+02	0,0003157	
6	0,3501	4	3,155E+02	0,0003155	
7	0,65	4	1,345E+02	0,0001345	
8	1,00	4	6,861E+01	0,00006861	

Figura 150. Variación de la deformación radial $\boldsymbol{\varepsilon}_x$, en función de la profundidad, Z. (Progresiva: 23+750 Km. – Eje Y)

l. Deformación tangencial $\boldsymbol{\varepsilon}_{y}$.

Tabla 82

Valores de deformaciones tangenciales $\boldsymbol{\varepsilon} \boldsymbol{y}$

Punto	7	G	Deformaciones		
	Z, m	Сара	Bisar (µStrain)		
1	0,00	1	2,146E+02	-0,0002628	
2	0,00	1	-3,582E+02	0,0003582	
3	0,05	1	2,352E+02	0,0002352	
4	0,20	2	6,452E+01	0,00006452	
5	0,35	3	1,961E+02	0,0001961	
6	0,3501	4	1,960E+02	0,0001960	
7	0,65	4	1,163E+02	0,00001163	
8	1,00	4	6,436E+01	0,00006436	

Figura 151. Variación de la deformación tangencial $\boldsymbol{\varepsilon}_{y}$, en función de la profundidad, Z. (Progresiva: 23+750 Km. – Eje Y)

m. Deformación vertical $\boldsymbol{\varepsilon}_{z}$.

Tabla 83

Valores de deformaciones verticales $\boldsymbol{\varepsilon}_{z}$

Dunto	7 m	Cana	Deformaciones Bisar (µStrain)			
1 unto	Ζ, Ш	Capa				
1	0,00	1	7,979E+01	0,00007979		
2	0,00	1	1,825E+02	-0,0001825		
3	0,05	1	-4,716E+02	-0,0004716		
4	0,20	2	-4,334E+02	-0,0004334		
5	0,35	3	-4,689E+02	-0,0004689		
6	0,3501	4	-5,880E+02	-0,0005880		
7	0,65	4	-2,828E+02	-0,0002828		
8	1,00	4	-1,488E+02	-0,0001488		

Figura 152. Variación de la deformación vertical $\boldsymbol{\varepsilon}_{z}$, en función de la profundidad, Z. (Progresiva: 23+750 Km. – Eje Y)

- n. Deflexión vertical $\Delta_{z.}$
- La tendencia de la deflexión vertical es parábola creciente en la superficie de la capa rodadura y decreciente hasta la interface con la capa de base granular.
- La tendencia de la Δ_z, en la capa de base granular es parábola decreciente hasta la interface con subbase granular. Por lo que se aprecia la disminución de la deflexión.
- La tendencia de la Δ_z , en la capa subbase granular es parábola decreciente en todo su espesor.
- Es decir, la disipación del paquete estructural es de 0,1819 mm (32,58%).

- La tendencia de Δ_z , en la subrasante la parábola decrece lentamente, la deflexión disipa el 0,3765 mm (67,42%).

Mientras tanto, el comportamiento de la deflexión del modelo estructural es según los valores de la tabla 84 y la gráfica se aprecia en la figura 153.

Tabla 84

Dunto	7 m	Cana	Deflexiones		
1 unto	<i>L</i> , III	Capa	Bisar (µm)	mm	
1	0,00	1	4,908E+02	0,4908	
2	0,00	1	5,584E+02	0,5584	
3	0,05	1	5,503E+02	0,5503	
4	0,20	2	4,458E+02	0,4458	
5	0,35	3	3,765E+02	0,3765	
6	0,3501	4	3,764E+02	0,3764	
7	0,65	4	2,530E+02	0,2530	
8	1,00	4	1,812E+02	0,1812	

Valores de deflexiones verticales Δz

Figura 153. Perfil de deflexión en función de la profundidad, Z. (Progresiva: 23+750 Km.-Eje Y)

Tercer punto de estudio: Progresiva 24+475 Km. Eje Y.

o. Esfuerzos radial σ_x .

Tabla 85

Valores de esfuerzos radiales σ_{x} ,

Punto	Z. m	Сара	Esfuerzos		
	,		Bisar (MPa) (Kg/cm		
1	0,00	1	-4,763E-01	-4,8569	
2	0,00	1	-1,213E+00	-12,3691	
3	0,05	1	2,874E-01	2,9306	
94	0,20	2	6,157E-02	0,6278	
5	0,35	3	8,032E-02	0,8190	
6	0,3501	4	-1,765E-03	-0,0180	
7	0,65	4	-7,214E-04	-0,0074	
8	1,00	4	-2,405E-04	-0,0025	

Nota: Figura 122. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva: 24+475 Km. – Eje Y)

p. Esfuerzos tangencial σ_{y} .

Tabla 86

Valores de esfuerzos tangenciales σy .

Punto	Z. m	Сара	Esfuerzos		
	,		Bisar (MPa)	(Kg/cm ²)	
1	0,00	1	-1,077E-01	1,0982	
2	0,00	1	-1,119E+00	-11,4106	
3	0,05	1	2,594E-01	2,6451	
4	0,20	2	4,580E-03	0,0467	
5	0,35	3	5,967E-02	0,6085	
6	0,3501	4	-8,643E-03	-0,0881	
7	0,65	4	-1,770E-03	-0,0180	
8	1,00	4	-4,902E-04	-0,0050	

- q. Esfuerzos vertical σ_z .
- La tendencia del σ_z , es de parábola decreciente inicia del eje de la simetría y pasa a ser creciente en el espesor de la capa asfáltica del modelo estructural. El esfuerzo es a compresión.
- El máximo del σ_z , corresponde al punto de la rasante del pavimento y su capacidad es similar a la presión de contacto de 549,18 kPa, (0,549 MPa), así como se aprecia en la tabla 87.
- Para la estructura en estudio, en progresiva 24+475 km, el esfuerzo vertical en la capa asfáltica disipa el 19,54%.
- La tendencia del σ_z , es parábola creciente, el 60,74% disipa en base granular.
- La tendencia del σ_z , es parábola creciente, el 9,58% disipa en la sub base.
- La tendencia del σ_z, es parábola creciente, el 10,14% disipa en la subrasante.
 Se puede observar los valores en la tabla 87 y la gráfica de parábola color rojo de la figura 154.

Tabla 87

	0	

Valores de esfuerzos verticales σ z.

Dunto	7	Cana	Esfuer	zos (Kg/cm ²) 0,0000 -5,6003 -4,5061 -1,1043 -0,5678
Pullto	Ζ, Ш	Capa	Bisar (MPa)	(Kg/cm ²)
1	0,00	1	0,000E+00	0,0000
2	0,00	1	-5,492E-01	-5,6003
3	0,05	1	-4,419E-01	-4,5061
4	0,20	2	-1,083E-01	-1,1043
5	0,35	3	-5,568E-02	-0,5678
6	0,3501	4	-5,566E-02	-0,5376
7	0,65	4	-2,601E-02	-0,2652
8	1,00	4	-1,370E-02	-0,1397

Figura 154. Variación del esfuerzo radial σ_x , tangencial σ_y y vertical σ_z en función de la profundidad, Z. (Progresiva: 24+475 Km. – Eje Y)

r. Deformación radial $\boldsymbol{\varepsilon}_{x}$.

Tabla 88

Valores de deformaciones radiales $\boldsymbol{\varepsilon} x$

D (7	C	Deformac	ciones
Punto	Z, m	Capa	Bisar (µStrain)	
1	0,00	1	-3,779E+02	-0,0003779
2	0,00	1	-4,624E+02	0,0004624
3	0,05	1	2,583E+02	0,0002583
4	0,20	2	3,256E+02	0,0003256
5	0,35	3	3,530E+02	0,0003530
6	0,3501	4	3,529E+02	0,0003529
7	0,65	4	1,530E+02	0,0001530
8	1,00	4	7,978E+01	0,00007978

Figura 155. Variación de la deformación radial $\boldsymbol{\varepsilon}_x$, en función de la profundidad, Z. (Progresiva: 24+475 Km. – Eje Y)

s. Deformación tangencial $\boldsymbol{\varepsilon}_{y}$.

Tabla 89

Valores de deformaciones tangenciales $\boldsymbol{\varepsilon} \boldsymbol{y}$

	-	~	Deformac	ciones
Punto	Z, m	Capa	Bisar (µStrain)	iones -0,0002018 0,0003693 0,0002305 0,00007127 0,0002234 0,0002234 0,00001332 0,00007508
1	0,00	1	2,018E+02	-0,0002018
2	0,00	1	-3,693E+02	0,0003693
3	0,05	1	2,305E+02	0,0002305
4	0,20	2	7,127E+01	0,00007127
5	0,35	3	2,234E+02	0,0002234
6	0,3501	4	2,234E+02	0,0002234
7	0,65	4	1,332E+02	0,00001332
8	1,00	4	7,508E+01	0,00007508

Figura 156. Variación de la deformación tangencial $\boldsymbol{\varepsilon}_y$, en función de la profundidad, Z. (Progresiva: 24+475 Km. – Eje Y)

t. Deformación vertical $\boldsymbol{\varepsilon}_{z}$.

Tabla 90

Valores de deformaciones verticales $\boldsymbol{\varepsilon}_{Z}$

			Deforma	ciones
Punto	Z, m	Capa	Bisar (µStrain)	0,00009484 -0,0001962 -0,0004657 -0,0004326 -0,0005008 -0,0006621 -0,0003233
1	0,00	1	9,484E+01	0,00009484
2	0,00	1	1,962E+02	-0,0001962
3	0,05	1	-4,657E+02	-0,0004657
4	0,20	2	-4,326E+02	-0,0004326
5	0,35	3	-5,008E+02	-0,0005008
6	0,3501	4	-6,621E+02	-0,0006621
7	0,65	4	-3,233E+02	-0,0003233
8	1,00	4	-1,736E+02	-0,0001736

Figura 157. Variación de la deformación vertical $\boldsymbol{\varepsilon}_{z}$, en función de la profundidad, Z. (Progresiva: 24+475 Km. – Eje Y)

- u. Deflexión vertical Δ_z .
- La tendencia de la deflexión vertical es parábola creciente en la superficie de la capa rodadura y decreciente hasta la interface con la capa de base granular.
- La tendencia de la Δ_z, en la capa de base granular es parábola decreciente hasta la interface con subbase granular. Por lo que se aprecia la disminución de la deflexión.
- La tendencia de la Δ_z , en la capa subbase granular es parábola decreciente en todo su espesor.
- Es decir, la disipación del paquete estructural es de 0,1801 mm (29,00%).
- La tendencia de Δ_{z} , en la subrasante la parábola decrece lentamente, la deflexión disipa el 0,4409 mm (71,00%).

El comportamiento de la deflexión del modelo estructural es según los valores de la tabla 91 y la gráfica se aprecia en la figura 158.

Tabla 91

Valores de deflexiones verticales .	Δz
-------------------------------------	------------

Dunto	7 m	Cana	Deflexi	ones
r unto	<i>L</i> , III	Capa	Bisar (µm)	mm
1	0,00	1	5,554E+02	0,5554
2	0.00	1	6,210E+02	0,6210
3	0,05	1	6,134E+02	0,6134
4	0,20	2	5,117E+02	0,5117
5	0,35	3	4,409E+02	0,4409
6	0,3501	4	4,409E+02	0,4408
7	0,65	4	3,011E+02	0,3103
8	1,00	4	2,182E+02	0,2182

Nota: Figura 122. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva: 24+475 Km. – Eje Y)

Figura 158. Perfil de deflexión en función de la profundidad, Z. (Progresiva: 24+475 Km.-Eje Y)

Cuarto punto de estudio: Progresiva 24+850 Km, eje Y.

v. Esfuerzos radial σ_x .

Tabla 92

Valores de esfuerzos radiales σ x,

Dumto	7	Cono	Esfue	ZOS
Funto	Ζ, Ш	Capa	Bisar (MPa)	(Kg/cm ²)
1	0,00	1	-4,520E-01	-4,6091
2	0,00	1	-1,190E+00	-12,1346
3	0,05	1	2,963E-01	3,0214
94	0,20	2	5,702E-02	0,5814
5	0,35	3	6,723E-02	0,6856
6	0,3501	4	-1,825E-03	-0,0186
7	0,65	4	-6,367E-04	-0,0065
8	1,00	4	-1,898E-04	-0,0019

Nota: Figura 127. Resultados (reporte de salida) del programa BISAR 3.0. (Progresiva: 24+850 Km. – Eje Y).

w. Esfuerzos tangencial σ_{y} .

Tabla 93

Valores de esfuerzos tangenciales σy

-	-	~	Esfuer	rzos
Punto	Z, m	Сара	Bisar (MPa)	(Kg/cm ²)
1	0,00	1	1,302E-01	1,3277
2	0,00	1	-1,099E+00	-11,2066
3	0,05	1	2,675E-01	2,7277
4	0,20	2	-9,315E-05	-0,0009
5	0,35	3	4,785E-02	0,4879
6	0,3501	4	-9,457E-03	-0,0964
7	0,65	4	-1,798E-03	-0,0183
8	1,00	4	-4,619E-04	-0,0047

- x. Esfuerzos vertical σ_z .
- La tendencia del σ_z , es de parábola decreciente inicia del eje de la simetría y pasa a ser creciente en el espesor de la capa asfáltica del modelo estructural. El esfuerzo es a compresión.
- El máximo del σ_z , corresponde al punto de la rasante del pavimento y su capacidad es similar a la presión de contacto de 549,18 kPa, (0,549 MPa), así como se aprecia en la tabla 94.
- Para la estructura en estudio, en progresiva 24+850 km, el esfuerzo vertical en la capa asfáltica disipa el 19,43%.
- La tendencia del σ_z , es parábola creciente, el 60,20% disipa en base granular.
- La tendencia del σ_z , es parábola creciente, el 9,47% disipa en la sub base.
- La tendencia del σ_z, es parábola creciente, el 10,90% disipa en la subrasante.
 Se puede observar los valores en la tabla 94 y la gráfica de parábola color rojo de la figura 159.

Tabla 94

Valores de esfuerz	os verticales σ z
--------------------	--------------------------

Punto	7 m	Cana	Esfuer	rzos
1 unto	22, 111	Capa	Bisar (MPa)	(Kg/cm ²)
1	0,00	1	0,000E+00	0,0000
2	0,00	1	-5,492E-01	-5,6003
3	0,05	1	-4,425E-01	-4,5122
4	0,20	2	-1,119E-01	-1,1411
5	0,35	3	-5,995E-02	-0,6113
6	0,3501	4	-5,994E-02	-0,6112
7	0,65	4	-2,756E-02	-0,2810
8	1,00	4	-1,427E-02	-0,1455

Figura 159. Variación del esfuerzo radial σ_x , tangencial σ_y y vertical σ_z en función de la profundidad, Z. (Progresiva: 24+850 Km. – Eje Y).

y. Deformación radial $\boldsymbol{\varepsilon}_{x.}$

Tabla 95

Valores de deformaciones radiales $\boldsymbol{\varepsilon} x$

Dunto	7 m	Cana	Deforma	ciones
runto	Ζ, Ш	Capa	Bisar (µStrain)	
1	0,00	1	-3,658E+02	-0,0003658
2	0,00	1	-4,510E+02	0,0004510
3	0,05	1	2,629E+02	0,0002623
4	0,20	2	3,207E+02	0,0003207
5	0,35	3	3,232E+02	0,0003232
6	0,3501	4	3,231E+02	0,0003231
7	0,65	4	1,382E+02	0,0001382
8	1,00	4	7,078E+01	0,00007078

Figura 160. Variación de la deformación radial $\boldsymbol{\varepsilon}_x$, en función de la profundidad, Z. (Progresiva: 24+850 Km. – Eje Y)

z. Deformación tangencial $\boldsymbol{\varepsilon}_{y}$.

Tabla 96

Valores de deformaciones tangenciales $\boldsymbol{\varepsilon} \boldsymbol{y}$

Dunto	7 m	Cana	Deformaciones			
Funto	Z, III	Capa	Bisar (µStrain)			
1	0,00	1	2,120E+02	-0,0002120		
2	0,00	1	-3,604E+02	0,0003604		
3	0,05	1	2,342E+02	0,0002343		
4	0,20	2	6,585E+01	0,00006585		
5	0,35	3	2,015E+02	0,0002015		
6	0,3501	4	2,015E+02	0,0002015		
7	0,65	4	1,197E+02	0,00001197		
8	1,00	4	6,645E+01	0,00006645		

Deformaciones Tangenciales Ey

Figura 161. Variación de la deformación tangencial $\boldsymbol{\varepsilon}_{y}$, en función de la profundidad, Z. (Progresiva: 24+850 Km. – Eje Y)

aa. Deformación vertical $\boldsymbol{\varepsilon}_{z}$.

Tabla 97

Valores de deformaciones verticales $\boldsymbol{\varepsilon}_{Z}$

	-	a	Deformaciones				
Punto	Z, m	Сара	Bisar (µStrain)				
1	0,00	1	8,282E+01	0,00008282			
2	0,00	1	1,853E+02	-0,0001853			
3	0,05	1	-4,704E+02	-0,0004704			
4	0,20	2	-4,331E+02	-0,0004331			
5	0,35	3	-4,753E+02	-0,0004753			
6	0,3501	4	-6,029E+02	-0,0006029			
7	0,65	4	-2,908E+02	-0,0002908			
8	1,00	4	-1,536E+02	-0,0001536			

Figura 162. Variación de la deformación vertical $\boldsymbol{\varepsilon}_{z}$, en función de la profundidad, Z. (Progresiva: 24+850 Km. – Eje Y)

- bb. Deflexión vertical Δ_{z} .
- La tendencia de la deflexión vertical, es parábola creciente en la superficie de la capa rodadura y decreciente hasta la interface con la capa de base granular.
- La tendencia de la Δ_z, en la capa de base granular es parábola decreciente hasta la interface con subbase granular. Por lo que se aprecia la disminución de la deflexión.
- La tendencia de la Δ_z , en la capa subbase granular es parábola decreciente en todo su espesor.
- Es decir, la disipación del paquete estructural es de 0,1816 mm (21.83%).
- La tendencia de Δ_z , en la subrasante la parábola decrece lentamente, la deflexión disipa el 0,3889 mm (68.17%).

Evidentemente, el comportamiento de la deflexión del modelo estructural es según los valores de la tabla 98 y la gráfica se aprecia en la figura 163.

Tabla 98

Valores de deflexiones	verticales 2	1z
------------------------	--------------	----

Punto	7 m	Cana	Defle	exiones
1 unto	2, m	Capa	Bisar (µm)	mm
1	0,00	1	5,032E+02	0,5032
2	0,00	1	5,705E+02	0,5705
3	0,05	1	5,625E+02	0,5625
4	0,20	2	4,585E+02	0,4585
5	0,35	3	3,889E+02	0,3889
6	0,3501	4	3,889E+02	0,3889
7	0,65	4	2,622E+02	0,2622
8	1,00	4	1,882E+02	0,1882
		-		

Figura 163. Perfil de deflexión en función de la profundidad Z. (Progresiva: 24+850 Km.– Eje Y)

4.1.6 Cuenco de deflexiones

4.1.6.1 Método CONREVIAL Vista lateral (Eje X).

Tramo: 23+000–25+000 Km. Se grafica de acuerdo a los valores de deflexión promedio, es decir, valores de 81 segmentos. Siendo la deflexión máxima 57,95 x 10^{-2} mm, tal cual se aprecia en la tabla 99 y se tiene radio curvatura promedio de 138,96 m, la cual se aprecia en la tabla 28. Se puede observar que el cuenco de deflexiones representa una curva extensa poco profunda según la figura 20, el tipo de deflexión es de tipo I (buen subrasante y buen pavimento), según la tabla 6.

Tabla 99

Valores de cuenco de deflexiones promedio, método CONREVIAL. (Tramo: 23+000-25+000 Km)

Dunto	Distancia om	Cana	Deflexiones promedio		
1 unto	Distancia cili	Capa –	(x10 ⁻² mm)	(mm)	
1	0	1	57,95	0,5795	
2	25	1	34,20	0,3420	
3	50	1	20,18	0,2018	
4	75	1	11,91	0,1191	
5	100	1	7,03	0,0703	

CUENCO DE DEFLEXIONES TRAMO: 23+000 - 25+000 KM

Figura 164. Cuenco de deflexiones, método CONREVIAL. (Tramo: 23+000-25+000 Km.- Eje X)

Primer punto de estudio: Progresiva 23+275 Km. Eje X.

Para graficar el cuenco de deflexiones en el primer segmento se tomó los valores de la tabla 100, la deflexión máxima es 78×10^{-2} mm, la cual está por debajo de la deflexión admisible 133,5 x 10^{-2} mm, se puede observar que el cuenco deflexiones representa una curva corta poco profunda de acuerdo a la figura 20, el tipo de deflexión es de tipo III buena subrasante y mal pavimento, según la tabla 6.

Tabla 100

Valores de cuenco de deflexiones método CONREVIAL. (Progresiva: 23+275 Km)

Punto	Distancia	Cana	Deflexiones			
Funto	cm	Capa	(x10 ⁻² mm)	(mm)		
1	0	1	78	0,78		
2	25	1	46	0,46		
3	50	1	27	0,27		
4	75	1	16	0,16		
5	100	1	9	0,09		

Figura 165. Cuenco de deflexiones, método CONREVIAL. (Progresiva: 23+275 Km. – Eje X)

4.1.6.2 Método SHELL vista lateral (Eje X).

🛗 BISAR 3.	0 - Bitume	n Stress Analy	ysis in Roads					
Project Edit Copy From Results Window Help								
PROGRESIVA 23+275 KM EJE X (r, m)								
Number of Systems (1-10):								
System De	escription:	PROGRESIVA	23+275 KM E	JE X (r, m)				
	Loads	Layer:	\$	Positions				
C - L -	. De strine s	. Circular LD			<u></u>	ave <u>R</u> etrieve		
<u>5</u> elec	t Positions	ror Standard D	ual wheel	No o	f Position En	tries (1-10): 10 🚔		
	Position	X	Y	Z (depth)	Layer			
	Number	(m)	(m)	(m)	NU			
	1	0,0000	0,0000	0,0000	1			
	2	0,1500	0,0000	0,0000	1			
	3	0,3000	0,0000	0,0000	1			
	4	0,6000	0,0000	0,0000	1			
	5	0,9000	0,0000	0,0000	1			
	6	1,2000	0,0000	0,0000	1			
	7	1,5000	0,0000	0,0000	1			
	8	1,8000	0,0000	0,0000	1			
	9	2,1000	0,0000	0,0000	1			
	10	2,4000	0,0000	0,0000	1			

Figura 166. Información de entrada, posiciones para cuenco de deflexiones (Progresiva: 23+275 Km. – Eje X)

BISAR 3.0 - Block Report

PROGRESIVA 23+275 KM EJE X (r, m)

System 1: PROGRESIVA 23+275 KM EJE X (r, m)

Structure				Loads								
Layer Number	Thickness fm)	Mobulus af Elasticity (NRa)	Paissan's Ratio	Load Number	Ver Load KN	tical Stress (ND2a)	Harizarda Load KN)	L(Shear) Stress (ATPa)	Radius fru)	X-Coard fm)	Y-Coard fm)	Shear Angle (Degrees)
1	0,050	1,360E+03	0,35	1	4,021E+01	5,492E-01	0,000E+00	0,000E+00	1,527E-01	0,000E+00	0,000E+00	0,000E+00
2 3 4	0,150 0,150	3,070E+02 2,230E+02 8,600E+01	0,37 0,40 0,45									

						Stresses			Strains			Displacements	
Position.	Layer	X-Courd	Y-Courd	Depth	xx	YY	ZZ	xx	YY	ZZ	ux	- UY	uz
Nimber	Number	(m)	(m)	(m)	(ABa)	(hTPa)	(6 1 14)	µstrain.	pustrain.	pustraiin.	(m)	(jan)	(jan)
1	l	0,000 E+ 00	0,000 E+ 00	0,000 E+ 00	-1,193E+00	-1,193E+00	-5,492E-01	-4,291E+02	-4,291E+02	2,105E+02	0,000E+00	0,000 E+ 00	7,078E+02
ź	l	1,500E-01	0,000 E+ 00	0,000 E+ 00	-7,392E-01	-9,431E-01	-5,492E-01	-1,595E+02	-3,619E+02	2,915E+01	-5,428E+01	0,000 E+ 00	5,548E+02
3	l	3,000E-01	0,000 E+ 00	0,000 E+ 00	4,952E-02	-1,637E-01	0,000 E+ 00	7,854E+01	-1,331E+02	2,938 E+01	-3,993E+01	0,000 E+ 00	3,576 E+ 02
4	l	6,000E-01	0,000 E+ 00	0,000 E+ 00	2,765E-02	-5,057E-02	0,000 E+ 00	3,335E+01	-4,430E+01	5,899E+00	-2,658E+01	0,000 E+ 00	2,131E+02
5	l	9,000E-01	0,000 E+ 00	0,000 E+ 00	2,545E-02	-1,837E-02	0,000 E+ 00	2,344E+01	-2,006E+01	-1,823E+00	-1,805E+01	0,000 E+ 00	1,439E+02
6	1	1,200E+00	0,000 E+ 00	0,000 E+ 00	1,751E-02	-7,892E-03	0,000E+00	1,490E+01	-1,031E+01	-2,475E+00	-1,237E+01	0,000 E+ 00	1,054E+02
7	l	1,500E+00	0,000 E+ 00	0,000 E+ 00	1,110E-02	-4,109E-03	0,000E+00	9,223E+00	-5,879E+00	-1,800E+00	-8,818E+00	0,000 E+ 00	8,229E+01
8	l	1,800E+00	0,000 E+ 00	0,000 E+ 00	6,957E-03	-2,562E-03	0,000 E+ 00	5,775E+00	-3,675E+00	-1,131E+00	-6,614E+00	0,000 E+ 00	6,743E+01
9	l	2,100E+00	0,000 E+ 00	0,000 E+ 00	4,431E-03	-1,824E-03	0,000E+00	3,728E+00	-2,482E+00	-6,710E-01	-5,211E+00	0,000 E+ 00	5,721E+01
10	l	2,400E+00	0,000 E+ 00	0,000 E+ 00	2,930E-03	-1,408E-03	0,000 E+ 00	2,517E+00	-1,789E+00	-3,918E-01	-4,294E+00	0,000 E+ 00	4,979E+01

Figura 167. Resultados (reporte de salida) del programa BISAR 3.0, para cuenco de deflexiones (Progresiva: 23+275 Km. – Eje X)

El cuenco de deflexiones presenta un valor máximo en el eje de aplicación de la carga vehicular, y a medida que se aleja de este, el valor de la deflexión decrece, hasta tal segmento que tiende a cero.

De este modo, para el estudio en la progresiva 23+275 km. según el valor de r se grafica el cuenco de deflexiones; tal como se aprecia en la evolución descendiente de la deflexión a medida que se aumenta el valor de r, en la cual la deflexión máxima es de 0,7078 mm, menor del valor admisible 1,1616 mm, es decir que está dentro del parámetro. Para el valor de r = 2,4 m la deflexión se reduce a 0,0497 mm. El comportamiento de la deflexión se puede ver la tabla 101 y la figura 168.

Tabla 101

Durato		Cara	Deflexiones			
Punto	г, ш	Capa	Bisar (µm)	(mm)		
1	0	1	7,078E+02	0,7078		
2	0,15	1	5,548E+02	0,5548		
3	0,30	1	3,576E+02	0,3576		
4	0,60	1	2,131E+02	0,2131		
5	0,90	1	1,439E+02	0,1439		
6	1,20	1	1,054E+02	0,1054		
7	1,50	1	8,229E+01	0,0823		
8	1,8	1	6,743E+01	0,0674		
9	2,10	1	5,721E+01	0,0572		
10	2,40	1	4,979E+01	0,0497		

Valores de cuenco de deflexiones método SHELL. (Progresiva: 23+275 Km)

Figura 168. Cuenco de deflexiones Método SHELL. (Progresiva: 23+275 Km. – Eje X)

4.1.6.3 Método CONREVIAL vista lateral (Eje X).

Segundo punto de estudio: Progresiva 23+750 Km. Eje X

Para graficar el cuenco de deflexiones en el primer segmento se tomó los valores de la tabla 102, la deflexión máxima es 80 x 10^{-2} mm, la cual está por debajo de la deflexión admisible 133,5 x 10^{-2} mm, se puede observar que el cuenco de deflexiones representa una curva corta poco profunda de acuerdo a la figura 20, el tipo de deflexión es de tipo III buena subrasante y mal pavimento, según la tabla 6.

Tabla 102

Punto	Distancia	Cana	Deflexiones			
	cm	Capa	(x10 ⁻² mm)	(mm)		
1	0	1	80	0,80		
2	25	1	47	0,47		
3	50	1	35	0,35		
4	75	1	21	0,21		
5	100	1	12	0,12		

Valores de cuenco de deflexiones método CONREVIAL. (Progresiva: 23+750 Km)

Figura 169. Cuenco de deflexiones, método CONREVIAL. (Progresiva: 23+750 Km. – Eje X)

4.1.6.4 Método SHELL, vista lateral (Eje X).

📛 BISAR 3.0 - Bitumen Stress Analysis in Roads									
Project	Edit	Copy From	Results Window	v Help					
DPOC									
FROG									
Num	Number of Systems (1-10): 1 🖨								
Г									
Suet	tom Do	ecription:	DDOCDECIVA	22.7E0 KM E					
Jyst		scription.	PROGRESIVA	23+750 KM E	JE ~ (r, m)				
	/ L	.oads	Layer	\$	Positions				
						<u>S</u>	ave <u>R</u> etrieve		
	Select	Positions	for Standard D	ual Wheel	Noo	f Position En	tries (1-10) 10 📥		
		Position	X Coordinate	Y Coordinate	Z (depth)	Layer No			
		- Hamber	(m)	(m)	(m)				
		1	0.0000	0.0000	0.0000	1			
		2	0,1500	0,0000	0,0000	1			
		3	0,3000	0,0000	0,0000	1			
		4	0,6000	0,0000	0,0000	1			
		5	0,9000	0,0000	0,0000	1			
		6	1,2000	0,0000	0,0000	1			
		7	1,5000	0,0000	0,0000	1			
		8	1,8000	0,0000	0,0000	1			
		9	2,1000	0,0000	0,0000	1			
		10	2,4000	0,0000	0,0000	1			
	_		· · · ·						

Figura 170. Información de entrada, posiciones para cuenco de deflexiones (Progresiva: 23+750 Km. – Eje X)

BISAR 3.0 - Block Report

PROGRESIVA 23+750 KM EJE X (r, m)

System 1: PROGRESIVA 23+750 KM EJE X (r, m)

Structure				Loads								
Layer Number	Thickness (m)	Mobulus of Elasticity (MPa)	Paissan's Ratio	Load Number	Ver Load (kN)	tical Stress (MDa)	Harizants Losd (KN)	L(Shear) Stress (MPa)	Radius (m)	X-Coard (m)	Y-Coard (m)	Shear Angle (Degrees)
1 2 3 4	0,050 0,150 0,150	1,360E+03 3,070E+02 2,230E+02 9,500E+01	0,35 0,37 0,40 0,45	1	4,021E+01	5,492E-01	0,000 E+ 00	0,000 E+ 00	1,527E-01	0,000 E+ 00	0,000 E+ 00	0,000 E+ 00

						Stresses		Strains			Hisplacements		
Position.	Layer	X-Courd	Y-Coard	Depth	xx	YY	ZZ	xx	YY	ZZ	ux	- UY	uz
Nimber	Nimber	(m)	(m)	(m)	(ATPa)	(AB3)	(#114)	pusteraiin.	postrain.	pstrain.	(um)	(um)	(um)
1	l	0,000E+00	0,000E+00	0,000E+00	-1,178E+00	-1,178E+00	-5,492E-01	-4,217E+02	-4,217E+02	2,025E+02	0,000E+00	0,000E+00	6,773E+02
2	l	1,500E-01	0,000 E+ 00	0,000E+00	-7,261E-01	-9,290E-01	-5,492E-01	-1,534E+02	-3,5 49E +02	2,214E+01	-5,324E+01	0,000E+00	5,253E+02
3	l	3,000E-01	0,000 E+ 00	0,000E+00	5,768E-02	-1,529E-01	0,000 E+ 00	8,176E+01	-1,273E+02	2,451E+01	-3,818E+01	0,000E+00	3,309 E+ 02
4	l	6,000E-01	0,000 E+ 00	0,000 E+ 00	2,827E-02	-4,580E-02	0,000 E+ 00	3,257E+01	-4,095E+01	4,512E+00	-2,457E+01	0,000E+00	1,933E+02
5	l	9,000E-01	0,000 E+ 00	0,000 E+ 00	2,395E-02	-1,647E-02	0,000 E+ 00	2,185E+01	-1,827E+01	-1,925E+00	-1,644E+01	0,000E+00	1,296E+02
6	l	1,200E+00	0,000 E+ 00	0,000E+00	1,593E-02	-7,135E-03	0,000 E+ 00	1,355E+01	-9,347E+00	-2,264E+00	-1,122E+01	0,000E+00	9,486E+01
7	l	1,500E+00	0,000 E+ 00	0,000 E+ 00	9,927E-03	-3,786E-03	0,000 E+ 00	8,274E+00	-5,339 E+ 00	-1,580E+00	-8,008E+00	0,000E+00	7,418E+01
8	l	1,800E+00	0,000 E+ 00	0,000 E+ 00	6,174E-03	-2,401E-03	0,000 E+ 00	5,157E+00	-3,35 4E+ 00	-9,711E-01	-6,037E+00	0,000 E+ 00	6,088E+01
9	l	2,100E+00	0,000 E+ 00	0,000 E+ 00	3,932E-03	-1,722E-03	0,000 E+ 00	3,334E+00	-2,278E+00	-5,688E-01	-4,784E+00	0,000 E+ 00	5,172E+01
10	l	2,400E+00	0,000 E+ 00	0,000 E+ 00	2,613E-03	-1,330E-03	0,000 E+ 00	2,264E+00	-1,651E+00	-3,302E-01	-3,961E+00	0,000 E+ 00	4,505E+01

Figura 171. Resultados (reporte de salida) del programa BISAR 3.0, para cuenco de deflexiones (Progresiva: 23+750 Km. – Eje X)
Dentro de este marco, para el estudio en la progresiva 23+750 km. según el valor de r se grafica el cuenco de deflexiones se aprecia como es la evolución descendiente de la deflexión a medida que se aumenta el valor de r, en la cual la deflexión máxima es de 0,6773 mm, menor del valor admisible 1,1616 mm, es decir que está dentro del parámetro. Para el valor de r = 2,4 m la deflexión se reduce a 0,0451 mm. El comportamiento de la deflexión se puede ver la tabla 103 y la figura 172.

Dressta		Cana	Deflex	iones
Punto	г, ш	Capa	Bisar (µm)	(mm)
1	0	1	6,773E+02	0,6773
2	0,15	1	5,253E+02	0,5253
3	0,30	1	3,209E+02	0,3309
4	0,60	1	1,933E+02	0,1933
5	0,90	1	1,296E+02	0,1296
6	1,20	1	9,486E+01	0,0949
7	1,50	1	7,418E+01	0,0742
8	1,8	1	6,088E+01	0,0609
9	2,10	1	5,172E+01	0,0517
10	2,40	1	4,505E+01	0,0451

Valores de cuenco de deflexiones método SHELL. (Progresiva: 23+750 Km)

Figura 172. Cuenco de deflexiones Método SHELL. (Progresiva: 23+750 Km. – Eje X)

4.1.6.5 Método CONREVIAL vista lateral (Eje X).

Tercer punto de estudio: Progresiva 24+475 Km. Eje X

Para graficar el cuenco de deflexiones en el primer segmento se tomó los valores de la tabla 104, la deflexión máxima es 88 x 10^{-2} mm, la cual está por debajo de la deflexión admisible 133,5 x 10^{-2} mm, se puede observar que el cuenco de deflexiones representa una curva corta poco profunda de acuerdo a la figura 20, el tipo de deflexión es de tipo III buena subrasante y mal pavimento, según la tabla 6.

Dumto	Distancia	Cana	Deflexiones					
Punto	cm	Capa	(x 10 ⁻² mm)	(mm)				
1	0	1	88	0,88				
2	25	1	53	0,53				
3	50	1	32	0,32				
4	75	1	20	0,20				
5	100	1	12	0,12				

Valores de cuenco de deflexiones método CONREVIAL. (Progresiva: 24+475 Km)

Figura 173. Cuenco de deflexiones, método CONREVIAL. (Progresiva: 24+475 Km. – Eje X)

4.1.6.6 Método SHELL, vista lateral (Eje X).

Figura 174. Información de entrada, posiciones para cuenco de deflexiones (Progresiva: 24+475 Km. – Eje X)

BISAR 3.0 - Block Report

PROGRESIVA 24+475 KM EJE X (r, m)

System 1: PROGRESIVA 24+475 KM EJE X (r, m)

Structur	e			Loads								
Layer Nomber	Thickness (m)	Mobulus of Elasticity (MPa)	Paissan's Ratio	Load Number	Ver Load (kN)	tical Stress (MPa)	Harizants Losd (KN)	L(Shear) Stress (MPa)	Radius (m)	X-Coard (m)	Y-Coard (m)	Shear Angle (Degrees)
1 2 3 4	0,050 0,150 0,150	1,360E+03 3,070E+02 2,230E+02 7,700E+01	0,35 0,37 0,40 0,45	1	4,021E+01	5,492E-01	0,000 E+ 00	0,000 E+ 00	1,527E-01	0,000 E+ 00	0,000 E+ 00	0,000 E+ 00

						Stresses			Strains			Displacements	
Position	Layer	X-Courd	Y-Courd	Depth	xx	YY	22	xx	YY	22	ux	_ UY	ա
Number	Number	(m)	(m)	(m)	(ATPa)	(ATPA)	(6TDA)	pustraiin.	pustrain.	pustrain.	(m)	(Jan)	(jan)
1	1	0,000 E+ 00	0,000 E+ 00	0,000E+00	-1,211E+00	-1,211E+00	-5,492E-01	-4,374E+02	-4,375E+02	2,195E+02	0,000E+00	0,000E+00	7,441E+02
ź	1	1,500E-01	0,000 E+ 00	0,000 E+ 00	-7,542E-01	-9,590E-01	-5,492E-01	-1,664E+02	-3,697E+02	3,710E+01	-5,546E+01	0,000 E+ 00	5,899E+02
3	1	3,000E-01	0,000 E+ 00	0,000 E+ 00	4,006E-02	-1,760E-01	0,000 E+ 00	7,475E+01	-1,397E+02	3,499E+01	-4,192E+01	0,000 E+ 00	3,897E+02
4	1	6,000E-01	0,000 E+ 00	0,000 E+ 00	2,665E-02	-5,623E-02	0,000 E+ 00	3,407E+01	-4,820E+01	7,611E+00	-2,892E+01	0,000 E+ 00	2,372 E+ 02
5	1	9,000E-01	0,000 E+ 00	0,000 E+ 00	2,704E-02	-2,071E-02	0,000 E+ 00	2,521E+01	-2,218E+01	-1,629E+00	-1,996E+01	0,000 E+ 00	1,614E+02
6	1	1,200E+00	0,000 E+ 00	0,000 E+ 00	1,932E-02	-8,843E-03	0,000 E+ 00	1,648E+01	-1,147E+01	-2,695E+00	-1,377E+01	0,000 E+ 00	1,184E+02
7	1	1,500E+00	0,000 E+ 00	0,000 E+ 00	1,251E-02	-4,513E-03	0,000 E+ 00	1,036E+01	-6,539E+00	-2,059E+00	-9,808E+00	0,000 E+ 00	9,237E+01
8	1	1,800E+00	0,000 E+ 00	0,000 E+ 00	7,922E-03	-2,760E-03	0,000 E+ 00	6,535E+00	-4,068E+00	-1,328E+00	-7,322E+00	0,000 E+ 00	7,555E+01
9	1	2,100E+00	0,000 E+ 00	0,000 E+ 00	5,057E-03	-1,944E-03	0,000E+00	4,219E+00	-2,731E+00	-8,013E-01	-5,734E+00	0,000E+00	6,401E+01
10	1	2,400E+00	0,000 E+ 00	0,000 E+ 00	3,33 1E-0 3	-1,496E-03	0,000 E+ 00	2,83 4E+ 00	-1,957E+00	-4,721E-01	-4,698E+00	0,000 E+ 00	5,565E+01

Figura 175. Resultados (reporte de salida) del programa BISAR 3.0, para cuenco de deflexiones (Progresiva: 24+475 Km. – Eje X)

Igualmente, para el estudio en la progresiva 24+475 km. Según el valor de r se grafica el cuenco de deflexiones, donde se aprecia la evolución descendiente de la deflexión a medida que se aumenta el valor de r, en la cual la deflexión máxima es de 0,7441 mm, menor del valor admisible 1,1616 mm, es decir que está dentro del parámetro. Para el valor de r = 2,4 m la deflexión se reduce a 0,0557 mm. El comportamiento de la deflexión se puede ver la tabla 105 y la figura 176.

Deverte		Com	Deflexio	nes
Punto	r, m	Capa	Bisar (µm)	(mm)
1	0	1	7,441E+02	0,7441
2	0,15	1	5,899E+02	0,5899
3	0,30	1	3,897E+02	0,3897
4	0,60	1	2,372E+02	0,2372
5	0,90	1	1,614E+02	0,1614
6	1,20	1	1,184E+02	0,1184
7	1,50	1	9,237E+01	0,0924
8	1,80	1	7,555E+01	0,0756
9	2,10	1	6,401E+01	0,0640
10	2,40	1	5,565E+01	0,0557

Valores de cuenco de deflexiones método SHELL. (Progresiva: 24+475 Km)

Figura 176. Cuenco de deflexiones método SHELL. (Progresiva: 24+475 Km. – Eje X)

4.1.6.7 Método CONREVIAL, vista lateral (Eje X).

Cuarto punto de estudio: Progresiva 24+850 Km. Eje X

Para graficar el cuenco de deflexiones en el primer segmento se tomó los valores de la tabla 106, la deflexión máxima es 96 x 10^{-2} mm, la cual está por debajo de la deflexión admisible 133,5 x 10^{-2} mm, se puede observar que el cuenco de deflexiones representa una curva corta poco profunda de acuerdo a la figura 20, el tipo de deflexión es de tipo III buena subrasante y mal pavimento, según la tabla 6.

Durate	Distancia	Cono	Deflexiones					
Punto	cm	Capa	(x10 ⁻² mm)	(mm)				
1	0	1	96	0,96				
2	25	1	57	0,57				
3	50	1	34	0,34				
4	75	1	20	0,20				
5	100	1	12	0,12				

Valores de cuenco de deflexiones método CONREVIAL. (Progresiva: 24+850 Km)

Figura 177. Cuenco de deflexiones, método CONREVIAL. (Progresiva: 24+850 Km. – Eje X)

4.1.6.8 Método SHELL, vista lateral (Eje X).

Figura 178. Información de entrada, posiciones para cuenco de deflexiones (Progresiva: 24+850 Km. – Eje X)

BISAR 3.0 - Block Report

PROGRESIVA 24+850 KM EJE X (r, m)

System 1: PROGRESIVA 24+850 KM EJE X (r, m)

Structure				Loads								
Layer Number	Thidness (m)	Mobulus of Elasticity (MPa)	Paissan's Ratio	Load Number	Ver Load (kN)	tical Stress (MPa)	Harizants Losd (KN)	l (Shear) Stress (MPa)	Radius (m)	X-Coard (m)	Y-Coard (m)	Shear Angle (Degrees)
1 2 3 4	0,050 0,150 0,150	1,360E+03 3,070E+02 2,230E+02 9,100E+01	0,35 0,37 0,40 0,45	1	4,021E+01	5,492E-01	0,000 E+ 00	0,000 E+ 00	1,527E-01	0,000 E+ 00	0,000 E+ 00	0,000 E+ 00

						Stresses			Starains			Hisplacements	
Position.	Layer	X-Coard	Y-Courd	Depth	xx	YY	22	xx	YY	ZZ	ux	_ UY	uz
Nimber	Number	(m)	መ	ቀሳ	(ATPa)	(ATPa)	(AB4)	pustrain.	pustraiin.	pstrain	(jan)	(jan)	(um)
1	l	0,000E+00	0,000E+00	0,000 E+ 00	-1,185E+00	-1,185E+00	-5,492E-01	-4,249E+02	-4,249E+02	2,059E+02	0,000E+00	0,000 E+ 00	6,902 E +02
ź	1	1,500E-01	0,000 E+ 00	0,000 E+ 00	-7,317E-01	-9,351E-01	-5,492E-01	-1,561E+02	-3,579E+02	2,515E+01	-5,369E+01	0,000 E+ 00	5,378 E+ 02
3	1	3,000E-01	0,000 E+ 00	0,000 E+ 00	5,420E-02	-1,575E-01	0,000 E+ 00	8,039E+01	-1,298E+02	2,659E+01	-3,893E+01	0,000 E+ 00	3,422 E+ 02
4	1	6,000E-01	0,000 E+ 00	0,000 E+ 00	2,804E-02	-4,783E-02	0,000E+00	3,292E+01	-4,238E+01	5,094E+00	-2,543E+01	0,000 E+ 00	2,016E+02
5	1	9,000E-01	0,000 E+ 00	0,000 E+ 00	2,461E-02	-1,727E-02	0,000E+00	2,254E+01	-1,903E+01	-1,889E+00	-1,713E+01	0,000 E+ 00	1,356E+02
6	1	1,200E+00	0,000 E+ 00	0,000 E+ 00	1,661E-02	-7,452E-03	0,000E+00	1,413E+01	-9,753E+00	-2,356E+00	-1,170E+01	0,000 E+ 00	9,927E+01
7	1	1,500E+00	0,000 E+ 00	0,000 E+ 00	1,043E-02	-3,921E-03	0,000E+00	8,675E+00	-5,567E+00	-1,674E+00	-8,350E+00	0,000 E+ 00	7,758E+01
8	1	1,800E+00	0,000 E+ 00	0,000 E+ 00	6,503E-03	-2,469E-03	0,000E+00	5,417E+00	-3, 489E+ 00	-1,038E+00	-6,280E+00	0,000 E+ 00	6,363E+01
9	1	2,100E+00	0,000 E+ 00	0,000 E+ 00	4,141E-03	-1,765E-03	0,000E+00	3,499E+00	-2,364E+00	-6,113E-01	-4,964E+00	0,000 E+ 00	5,403E+01
10	l	2,400E+00	0,000 E+ 00	0,000 E+ 00	2,745E-03	-1,363E-03	0,000 E+ 00	2,370E+00	-1,709E+00	-3,557E-01	-4,102E+00	0,000 E+ 00	4,704E+01

Figura 179. Resultados (reporte de salida) del programa BISAR 3.0, para cuenco de deflexiones (Progresiva: 24+850 Km. – Eje X)

Al mismo tiempo, para el estudio en la progresiva 24+850 km. según el valor de r se grafica el cuenco de deflexiones, tal como se aprecia la evolución descendiente de la deflexión a medida que se aumenta el valor de r, en la cual la deflexión máxima es de 0,6902 mm, menor del valor admisible 1,1616 mm, es decir que está dentro del parámetro. Para el valor de r = 2,4 m la deflexión se reduce a 0,0470 mm. El comportamiento de la deflexión se puede ver la tabla 107 y la figura 180.

			Deflexiones				
Punto	r, m	Capa	Bisar (µm)	(mm)			
1	0	1	6,902E+02	0,6902			
2	0,15	1	5,378E+02	0,5378			
3	0,30	1	3,422E+02	0,3422			
4	0,60	1	2,016E+02	0,2016			
5	0,90	1	1,356E+02	0,1356			
6	1,20	1	9,927E+01	0,0993			
7	1,50	1	7,758E+01	0,0776			
8	1,8	1	6,363E+01	0,0636			
9	2,10	1	5,403E+01	0,0540			
10	2,40	1	4,704E+01	0,0470			

Valores de cuenco de deflexiones método SHELL. (Progresiva: 24+850 Km)

Figura 180. Cuenco de deflexiones método SHELL. (Progresiva: 24+850 Km. – Eje X)

4.1.6.9 Método SHELL, vista frontal (Eje Y).

Primer punto de estudio: Progresiva 23+275 Km. Eje Y

🛗 BISAR 3.0	0 - Bitume	n Stress Analy	ysis in Roads										
Project Edit	Copy From	Results Window	w Help										
PROGRESIVA	23+275 K	(MEJEY(r.n	n)			×							
Number of Systems (1-10): 1 System Description: PROGRESIVA 23+275 KM EJE Y (r, m)													
Loads Layers Positions Select Positions for Standard Dual Wheel No of Position Entries (1-10): 10													
	Position Number	X Coordinate (m)	Y Coordinate (m)	Z (depth) Coordinate (m)	Layer No								
	1	0,0000	0,0000	0,0000	1								
	2	0,0000	0,1500	0,0000	1								
	3	0,0000	0,3000	0,0000	1								
	4	0,0000	0,6000	0,0000	1								
	5	0,0000	0,9000	0,0000	1								
	6	0,0000	1,2000	0,0000	1								
	7	0,0000	1,5000	0,0000	1								
	8	0,0000	1,8000	0,0000	1								
	9	0,0000	2,1000	0,0000	1								
	10	0,0000	2,4000	0,0000	1								

Figura 181. Información de entrada, posiciones para cuenco de deflexiones (Progresiva: 23+275 Km. – Eje Y)

BISAR 3.0 - Block Report

PROGRESIVA 23+275 KM EJE Y (r, m)

System 1: PROGRESIVA 23+275 KM EJE Y (r, m)

Structur	e			Loads								
Layer Number	Thidness (m)	Mobulus af Elasticity (MPa)	Paissan's Ratio	Load Number	Ver Load (kN)	tical Stress (MPa)	Harizants Load (kN)	l (Shear) Stress (MPa)	Radius (m)	X-Coard (m)	Y-Coard (m)	Shear Angle (Degrees)
1 2	0,050 0,150	1,360E+03 3,070E+02	0,35 0,37	1	2,009E+01 2,009E+01	5,492E-01 5,492E-01	0,000 E+ 00 0,000 E+ 00	0,000 E+ 00 0,000 E+ 00	1,079E-01 1,079E-01	0,000 E+ 00 0,000 E+ 00	1,619E-01 -1,619E-01	0,000 E+ 00 0,000 E+ 00
- 3 4	0,150	2,230E+02 8,600E+01	0,40	-					_,		_,	

						Stresses			Strains			Bisplacements	
Position.	Layer	X-Courd	Y-Courd	Depth.	xx	YY	ZZ	xx	YY	ZZ	ux	_ UY	uz
Number	Nimber	¢n)	ቀሳ	(m)	(ATPa)	(AE9)	(ATPa)	pstrain.	pustorain.	pustrain.	(iau)	(im)	(um)
1	1	0,000 E+ 00	0,000E+00	0,000 E+ 00	-4,601E-01	1,227E-01	0,000E+00	-3,699E+02	2,086 E +02	8,684E+01	0,000E+00	0,000 E+ 00	5,202 E+ 02
ź	l	0,000 E+ 00	1,500E-01	0,000 E+ 00	-1,199E+00	-1,099E+00	-5,492E-01	-4,575E+02	-3,583 E+ 02	1,877E+02	0,000 E+ 00	-1,489E+01	5,900 E+ 02
3	l	0,000 E+ 00	3,000E-01	0,000 E+ 00	-3,582E-01	1,808E-02	0,000 E+ 00	-2,680E+02	1,055E+02	8,752E+01	0,000E+00	-4,814E+01	4,172E+02
4	1	0,000 E+ 00	6,000E-01	0,000 E+ 00	-6,098E-02	2,604E-02	0,000 E+ 00	-5,154E+01	3,484E+01	8,993 E+ 00	0,000 E+ 00	-2,718E+01	2,223E+02
5	1	0,000 E+ 00	9,000E-01	0,000 E+ 00	-2,118E-02	2,508E-02	0,000 E+ 00	-2,203E+01	2,389 E+01	-1,002E+00	0,000E+00	-1,849E+01	1,478E+02
б	l	0,000 E+ 00	1,200E+00	0,000 E+ 00	-8,769E-03	1,782E-02	0,000 E+ 00	-1,103E+01	1,536E+01	-2,329E+00	0,000E+00	-1,267E+01	1,073E+02
7	l	0,000 E+ 00	1,500E+00	0,000 E+ 00	-4,402E-03	1,143E-02	0,000 E+ 00	-6,178E+00	9,535E+00	-1,808E+00	0,000E+00	-8,996E+00	8,331E+01
8	1	0,000 E+ 00	1,800E+00	0,000 E+ 00	-2,676E-03	7,160E-03	0,000 E+ 00	-3,810E+00	5,954E+00	-1,154E+00	0,000E+00	-6,718E+00	6,798E+01
9	l	0,000 E+ 00	2,100E+00	0,000 E+ 00	-1,872E-03	4,561E-03	0,000E+00	-2,551E+00	3,836 E +00	-6,921E-01	0,000E+00	-5,277E+00	5,753E+01
10	1	0,000 E+ 00	2,400E+00	0,000 E+ 00	-1,428E-03	3,00 7E -03	0,000 E+ 00	-1,824E+00	2,579 E +00	-4,065E-01	0,000E+00	-4,330E+00	4,998E+01

Figura 182. Resultados (reporte de salida) del programa BISAR 3.0, para cuenco de deflexiones (Progresiva: 23+275 Km. – Eje Y)

En paralelo, para el estudio en la progresiva 23+275 km. según el valor de r se grafica el cuenco de deflexiones, donde se evidencia la evolución descendiente de la deflexión a medida que se aumenta el valor de r, en la cual la deflexión máxima es de 0,5900 mm, menor del valor admisible 1,1616 mm, es decir que está dentro del parámetro. La deflexión en el eje de la simetría es menor, por la influencia de distancia de la separación de las ruedas. Para el valor de r = 1,20 m la deflexión se reduce a 0,1073 mm. El comportamiento de la deflexión es de acuerdo a los valores de la tabla 108 y la gráfica se puede observar en la figura 183.

Tabla 108

		a	Deflexiones				
Punto	r, m	Сара	Bisar (µm)	(mm)			
1	0	1	5,202E+02	0,5202			
2	0,15	1	5,900E+02	0,5900			
3	0,30	1	4,172E+02	0,4172			
4	0,60	1	2,223E+02	0,2223			
5	0,90	1	1,478E+02	0,1478			
6	1,20	1	1,073E+02	0,1073			
7	1,50	1	8,331E+01	0,0833			
8	1,8	1	6,798E+01	0,0679			
9	2,10	1	5,753E+01	0,0575			
10	2,40	1	4,998E+01	0,0499			

Valores de cuenco de deflexiones método SHELL. (Progresiva: 23+275 Km.)

Figura 183. Cuenco de deflexiones método SHELL. (Progresiva: 23+275 Km. – Eje Y)

Segundo punto de estudio: Progresiva 23+750 Km.

Project Edit Copy From Results Window Help PROGRESIVA 23+750 KM EJE Y (r, m) Number of Systems (1-10): 1 System Description: PROGRESIVA 23+750 KM EJE Y (r, m) Loads Layers Positions Select Positions for Standard Dual Wheel Save Retrieve No of Position Entries (1-10): 10 ♥ Position X Y Z (depth) Layer No of Position Entries (1-10): 10 ♥ Position X Y Z (depth) Layer Number Coordinate (m) Coordinate (m) Coordinate (m) No 1 0.0000 0.0000 1 0.0000 1 2 0.0000 0.5000 0.0000 1 3 0.0000 0.5000 0.0000 1 4 0.0000 1,2000 0.0000 1 5 0.0000 1,2000 0.0000 1 6 0.0000 1,8000 0.0000 1 7 0.0000	🛗 BISAR 3.	0 - Bitume	en Stress Anal	ysis in Roads	;										
PROGRESIVA 23+750 KM EJE Y (r, m) × Number of Systems [1-10]: 1 System Description: PROGRESIVA 23+750 KM EJE Y (r, m) Loads Layers Positions Save Select Positions for Standard Dual Wheel No of Position Entries [1-10]: Position X Y Z (depth) Layer No of Position Entries [1-10]: 1 0,0000 1 0,0000 2 0,0000 3 0,0000 4 0,0000 5 0,0000 1 0,0000 1 0,0000 3 0,0000 1 0,0000 1 0,0000 1 0,0000 3 0,0000 1 0,0000 1 0,0000 1 0,0000 1 0,0000 1 0,0000 1 0,0000 1 0,0000 1 0,0000 </th <th>Project Edit</th> <th>Copy From</th> <th>Results Windo</th> <th>w Help</th> <th></th> <th></th> <th></th> <th></th>	Project Edit	Copy From	Results Windo	w Help											
Number of Systems (1-10): 1 System Description: PROGRESIVA 23+750 KM EJE Y (r, m) Loads Layers Positions Select Positions for Standard Dual Wheel Save Betrieve No of Position Entries (1-10): 10 10 Position X Y Z (depth) Layer Number Coordinate No 10 10 Number Coordinate Coordinate No 1 0,0000 0,0000 1 2 0,0000 0,0000 1 3 0,0000 0,0000 1 3 0,0000 0,0000 1 4 0,0000 0,0000 1 5 0,0000 1,5000 0,0000 1 6 0,0000 1,5000 0,0000 1 8 0,0000 1,8000 0,0000 1 9 0,0000 2,1000 0,0000 1	PROGRESIVA	23+750	KM EJE Y (r, n	n)				×							
System Description: PROGRE SIVA 23+750 KM EJE Y (r, m) Loads Layers Positions Select Positions for Standard Dual Wheel Save Retrieve No of Position Entries (1-10): 10 * Position X Y Z (depth) Layer Number Coordinate Coordinate No 10 * 1 0,0000 0,0000 1 2 0,0000 1 2 0,0000 0,1500 0,0000 1 3 0,0000 1 3 0,0000 0,3000 0,0000 1 3 0,0000 1 4 0,0000 0,0000 1 3 0,0000 1 5 0,0000 1,2000 0,0000 1 3 0,0000 1 6 0,0000 1,8000 0,0000 1 3 0,0000 1 8 0,0000 1,8000 0,0000 1 3 0,0000 1	Number of	Systems (1	-10): 1 🖨												
System Description: PROGRESIVA 23+750 KM EJE Y (r, m) Loads Layers Positions Select Positions for Standard Dual Wheel Save Retrieve No of Position Entries (1-10): 10 10 Position X Y Z (depth) Layer Number Coordinate (m) Coordinate (m) No No 1 0,0000 0,0000 1 No 2 0,0000 0,0000 1 1 3 0,0000 0,0000 1 1 4 0,0000 0,0000 1 1 5 0,0000 1,2000 0,0000 1 6 0,0000 1,5000 0,0000 1 7 0,0000 1,8000 0,0000 1 8 0,0000 2,1000 0,0000 1															
Loads Layers Positions Select Positions for Standard Dual Wheel Save Retrieve No of Position Entries (1-10): 10 10 Position X Y Z (depth) Layer Number Coordinate (m) Coordinate (m) No 10 10 1 0,0000 0,0000 1 2 0,0000 1 10 2 0,0000 0,1500 0,0000 1 1 0 1 1 1 1 1 0 1 <td< th=""><th>System De</th><th>scription:</th><th>PROGRESIVA</th><th>23+750 KM E</th><th>JEY (r, m)</th><th></th><th></th><th></th></td<>	System De	scription:	PROGRESIVA	23+750 KM E	JEY (r, m)										
Select Positions for Standard Dual Wheel No of Position Entries (1-10): 10 Position X Y Z (depth) Layer Number Coordinate (m) Coordinate (m) Coordinate (m) No 1 0,0000 0,0000 1 0 2 0,0000 0,1500 0,0000 1 3 0,0000 0,3000 0,0000 1 4 0,0000 0,6000 0,0000 1 5 0,0000 1,2000 0,0000 1 6 0,0000 1,5000 0,0000 1 7 0,0000 1,8000 0,0000 1 9 0,0000 2,1000 0,0000 1		Loads	Layer	5	Positions										
Select Positions for Standard Dual Wheel No of Position Entries (1-10): 10 Position X Y Z (depth) Layer Number Coordinate (m) Coordinate (m) No No 1 0,0000 0,0000 1 1 2 0,0000 0,1500 0,0000 1 3 0,0000 0,3000 0,0000 1 4 0,0000 0,0000 1 1 5 0,0000 0,0000 1 1 6 0,0000 1,5000 0,0000 1 7 0,0000 1,8000 0,0000 1 9 0,0000 2,1000 0,0000 1		```	, ,			<u>s</u>	ave <u>R</u> etrieve								
Position Number X Coordinate (m) Y Coordinate (m) Z (depth) Coordinate (m) Layer No 1 0,0000 0,0000 1 2 0,0000 0,1500 0,0000 1 3 0,0000 0,3000 0,0000 1 4 0,0000 0,6000 0,0000 1 5 0,0000 1,2000 0,0000 1 6 0,0000 1,5000 0,0000 1 7 0,0000 1,8000 0,0000 1 9 0,0000 2,1000 0,0000 1	Select	t Positions	for Standard D	ual Wheel	Νοιο	F Position En	tries (1-10) 10 🛓								
Number Coordinate (m) Coordinate (m) Coordinate (m) No 1 0,0000 0,0000 1 2 0,0000 0,1500 0,0000 1 3 0,0000 0,3000 0,0000 1 4 0,0000 0,0000 1 5 0,0000 0,0000 1 6 0,0000 1,2000 0,0000 1 7 0,0000 1,5000 0,0000 1 8 0,0000 1,8000 0,0000 1 9 0,0000 2,1000 0,0000 1	No of Position Entries (1-10): 10														
(m) (m) (m) 1 0,0000 0,0000 1 2 0,0000 0,1500 0,0000 1 3 0,0000 0,3000 0,0000 1 4 0,0000 0,6000 0,0000 1 5 0,0000 0,9000 0,0000 1 6 0,0000 1,2000 0,0000 1 7 0,0000 1,5000 0,0000 1 8 0,0000 1,8000 0,0000 1 9 0,0000 2,1000 0,0000 1		Number	Coordinate	Coordinate	Coordinate	No		н.							
1 0,0000 0,0000 1 2 0,0000 0,1500 0,0000 1 3 0,0000 0,3000 0,0000 1 4 0,0000 0,6000 0,0000 1 5 0,0000 0,0000 1 6 0,0000 1 6 0,0000 1,2000 0,0000 1 7 0,0000 1 8 0,0000 1,8000 0,0000 1 9 0,0000 2,1000 0,0000 1			(m)	(m)	(m)			н.							
2 0,0000 0,1500 0,0000 1 3 0,0000 0,3000 0,0000 1 4 0,0000 0,6000 0,0000 1 5 0,0000 0,9000 0,0000 1 6 0,0000 1,2000 0,0000 1 7 0,0000 1,5000 0,0000 1 8 0,0000 1,8000 0,0000 1 9 0,0000 2,1000 0,0000 1		1	0,0000	0,0000	0,0000	1									
3 0,0000 0,3000 0,0000 1 4 0,0000 0,6000 0,0000 1 5 0,0000 0,9000 0,0000 1 6 0,0000 1,2000 0,0000 1 7 0,0000 1,5000 0,0000 1 8 0,0000 1,8000 0,0000 1 9 0,0000 2,1000 0,0000 1		2	0,0000	0,1500	0,0000	1									
4 0,0000 0,6000 0,0000 1 5 0,0000 0,9000 0,0000 1 6 0,0000 1,2000 0,0000 1 7 0,0000 1,5000 0,0000 1 8 0,0000 1,8000 0,0000 1 9 0,0000 2,1000 0,0000 1		3	0,0000	0,3000	0,0000	1									
5 0,0000 0,0000 1 6 0,0000 1,2000 0,0000 1 7 0,0000 1,5000 0,0000 1 8 0,0000 1,8000 0,0000 1 9 0,0000 2,1000 0,0000 1		4	0,0000	0,6000	0,0000	1									
6 0,0000 1,2000 0,0000 1 7 0,0000 1,5000 0,0000 1 8 0,0000 1,8000 0,0000 1 9 0,0000 2,1000 0,0000 1		5	0,0000	0,9000	0,0000	1									
7 0,0000 1,5000 0,0000 1 8 0,0000 1,8000 0,0000 1 9 0,0000 2,1000 0,0000 1		6	0,0000	1,2000	0,0000	1									
8 0,0000 1,8000 0,0000 1 9 0,0000 2,1000 0,0000 1		7	0,0000	1,5000	0,0000	1									
9 0,0000 2,1000 0,0000 1		8	0,0000	1,8000	0,0000	1									
		9	0,0000	2,1000	0,0000	1									
10 0,0000 2,4000 0,0000 1		10	0,0000	2,4000	0,0000	1									

Figura 184. Información de entrada, posiciones para cuenco de deflexiones (Progresiva: 23+750 Km. – Eje Y)

BISAR 3.0 - Block Report

PROGRESIVA 23+750 KM EJE Y (r, m)

System 1: PROGRESIVA 23+750 KM EJE Y (r, m)

Structure	e			Loads								
Layer Number	Thidness (m)	Mobilus of Elasticity (APa)	Paissan's Raitio	Load Number	Ven Load (kN)	tical Stress (ACPa)	Harizarda Load (KN)	L(Shear) Stress (ATPa)	Radius (m)	X-Coard (m)	Y-Coard (m)	Shear Angle (Degrees)
ı	0,050	1,360 E+ 03	0,35	1	2,009 E+01	5,492E-01	0,000 E+ 00	0,000 E+ 00	1,079E-01	0,000 E+ 00	1,619E-01	0,000 E+ 00
ź	0,150	3,070 E+ 02	0,37	ź	2,009E+01	5,492E-01	0,000 E+ 00	0,000 E+ 00	1,079E-01	0,000 E+ 00	-1,619E-01	0,000 E+ 00
3	0,150	2,230 E+ 02	0,40									
4		9,500E+01	0,45									

						Stresses			Strains			Hisplacements	
Position	Layer	X-Courd	Y-Courd	Depth.	xx	YY	22	xx	YY	22	ux	UY	աշ
Number	Number	መን	(m)	(m)	(ATPa)	(AEA)	(6TPa)	pustrain.	pustrain.	pustrain.	(ian)	(jan)	(jan)
1	1	0,000 E+ 00	0,000 E+ 00	0,000 E+ 00	-4,459E-01	1,358E-01	0,000 E+ 00	-3,628E+02	2,146E+02	7,979E+01	0,000 E+ 00	0,000E+00	4,908E+02
ź	1	0,000 E+ 00	1,500E-01	0,000 E+ 00	-1,186E+00	-1,087E+00	-5,492E-01	-4,508E+02	-3,530 E+ 02	1,812E+02	0,000 E+ 00	-1,403E+01	5,614E+02
3	1	0,000 E+ 00	3,000E-01	0,000 E+ 00	-3,472E-01	2,659E-02	0,000 E+ 00	-2,621E+02	1,089E+02	8,251E+01	0,000E+00	-4,661E+01	3,908E+02
4	1	0,000 E+ 00	6,000E-01	0,000 E+ 00	-5,569E-02	2,740E-02	0,000 E+ 00	-4,800E+01	3,448E+01	7,279E+00	0,000E+00	-2,524E+01	2,022E+02
5	1	0,000 E+ 00	9,000E-01	0,000 E+ 00	-1,904E-02	2,381E-02	0,000 E+ 00	-2,013E+01	2,240E+01	-1,226E+00	0,000E+00	-1,688E+01	1,333E+02
6	1	0,000 E+ 00	1,200E+00	0,000 E+ 00	-7,918E-03	1,629E-02	0,000 E+ 00	-1,001E+01	1,402E+01	-2,155E+00	0,000E+00	-1,150E+01	9,665E+01
7	1	0,000 E+ 00	1,500E+00	0,000 E+ 00	-4,044E-03	1,024E-02	0,000 E+ 00	-5,610E+00	8,573E+00	-1,596E+00	0,000E+00	-8,171E+00	7,510E+01
8	1	0,000 E+ 00	1,800E+00	0,000 E+ 00	-2,501E-03	6,361E-03	0,000 E+ 00	-3,476E+00	5,321E+00	-9,934E-01	0,000E+00	-6,130E+00	6,137E+01
9	1	0,000 E+ 00	2,100E+00	0,000 E+ 00	-1,765E-03	4,048E-03	0,000 E+ 00	-2,340E+00	3, 431E+ 00	-5,875E-01	0,000E+00	-4,843E+00	5,200E+01
10	1	0,000 E+ 00	2,400 E +00	0,000 E+ 00	-1,349E-03	2,68 1E -03	0,000 E+ 00	-1,682E+00	2,319E+00	-3,429E-01	0,000 E+ 00	-3,993 E+ 00	4,521E+01

Figura 185. Resultados (reporte de salida) del programa BISAR 3.0, para cuenco de deflexiones (Progresiva: 23+750 Km. – Eje Y)

En ese mismo contexto, para el estudio en la progresiva 23+750 km. según el valor de r se grafica el cuenco de deflexiones, se aprecia la evolución descendiente de la deflexión a medida que se aumenta el valor de r, en la cual la deflexión máxima es de 0,5614 mm, menor del valor admisible 1,1616 mm, es decir que está dentro del parámetro. La deflexión en el eje de la simetría es menor, por la influencia de distancia de la separación de las ruedas. Para el valor de r = 1,20 m la deflexión se reduce a 0,0967 mm. El comportamiento de la deflexión es de acuerdo a los valores de la tabla 109 y la gráfica se puede observar en la figura 186.

Tabla 109

D (G	Deflexiones				
Punto	r, m	Capa	Bisar (µm)	(mm)			
1	0	1	4,908E+02	0,4908			
2	0,15	1	5,614E+02	0,5614			
3	0,30	1	3,908E+02	0,3908			
4	0,60	1	2,202E+02	0,2022			
5	0,90	1	1,333E+02	0,1333			
6	1,20	1	9,665E+01	0,0967			
7	1,50	1	7,510E+01	0,0751			
8	1,8	1	6,137E+01	0,0614			
9	2,10	1	5,200E+01	0,0520			
10	2,40	1	4,521E+01	0,0452			

Valores de cuenco de deflexiones método SHELL. (Progresiva: 23+750 Km.)

Figura 186. Cuenco de deflexiones método SHELL. (Progresiva: 23+750 Km. – Eje Y)

Tercer punto de estudio: Progresiva 24+475 Km. Eje Y.

🛗 BISAR 3.	.0 - Bitume	n Stress Anal	ysis in Roads										
Project Edit	Copy From	Results Windo	w Help										
PROGRESIV/	A 24+475 K	(MEJEY(r, m	n)				×						
Number of	Systems (1	-10): 1 🖨											
System De	escription:	PROGRESIVA	24+475 KM E	JEY (r, m)									
	Loads	Layer	s /	Positions									
	```				S	ave <u>R</u> etrieve							
<u>S</u> elec	t Positions	for Standard D	ual Wheel	No of	Position En	tries (1-10) 10 🛓							
Select Positions for Standard Dual Wheel No of Position Entries (1-10): 10													
	Number	Coordinate	Coordinate	Coordinate	No								
		(m)	(m)	(m)									
	1	0,0000	0,0000	0,0000	1								
	2	0,0000	0,1500	0,0000	1								
	3	0,0000	0,3000	0,0000	1								
	4	0,0000	0,6000	0,0000	1								
	5	0,0000	0,9000	0,0000	1								
	6	0,0000	1,2000	0,0000	1								
	7	0,0000	1,5000	0,0000	1								
	8	0,0000	1,8000	0,0000	1								
	9	0,0000	2,1000	0,0000	1								
	10	0,0000	2,4000	0,0000	1								

*Figura 187.* Información de entrada, posiciones para cuenco de deflexiones (Progresiva: 24+475 Km. – Eje Y)



# BISAR 3.0 - Block Report

# PROGRESIVA 24+475 KM EJE Y (r, m)

# System 1: PROGRESIVA 24+475 KM EJE Y (r, m)

Structure											
Thidnes (m)	Mobulus of Elasticity (MPa)	Paissan's Ratio	Load Number	Ver Load (kN)	tical Stress (MPa)	Harizanta Load (KM)	l (Shear) Stress (ATPa)	Radius (m)	X-Coard (m)	Y-Coard (m)	Shear Angle (Degrees)
0,050 0,150 0,150	1,360E+03 3,070E+02 2,230E+02	0,35 0,37 0,40	1 2	2,009 <b>E+01</b> 2,009 <b>E+01</b>	5,492E-01 5,492E-01	0,000 <b>E+</b> 00 0,000 <b>E+</b> 00	0,000 <b>E+</b> 00 0,000 <b>E+</b> 00	1,079E-01 1,079E-01	0,000 <b>E+</b> 00 0,000 <b>E+</b> 00	1,619E-01 -1,619E-01	0,000 <b>E+</b> 00 0,000 <b>E+</b> 00
1	<b>Chickness</b> <b>(m)</b> 0,050 0,150 0,150	Mobulus of Elasticity (n)         Mobulus of Elasticity (APs)           0,050         1,360E+03           0,150         3,070E+02           0,150         2,230E+02           7,700E+01         7,700E+01	Mobilies of Baselicity (m)         Poisson's Ratio           0,050         1,260E+03         0,35           0,150         2,230E+02         0,40           7,700E+01         0,45	Modulus of Elasticity (m)         Poisson's         Load           0,050         1,360E+03         0,25         1           0,150         2,230E+02         0,40         2           7,700E+01         0,45         0,45         1	Modulus of (m)         Weisson's         Lead         Ver           0,050         1,250E+03         0,35         1         2,003E+01           0,150         2,230E+02         0,40         2         2,003E+01           0,150         7,700E+01         0,45         2         2,003E+01	Modulus of (m)         Vertical Basicinity (MPa)         Poisson's Ratio         Lead Number         Lead (kN)         Code Stress (MPa)           0,050         1,250E+03         0,35         1         2,009E+01         5,492E-01           0,150         3,070E+02         0,40         2         2,009E+01         5,492E-01           0,150         2,230E+02         0,40         -         -         -	Mobilis of (m)         Wobilis of Biasticity         Vertical Poisson's         Vertical Load         Horizontal Stress           0,050         1,260E+03         0,35         1         2,009E+01         5,492E-01         0,000E+00           0,150         2,230E+02         0,40         2         2,009E+01         5,492E-01         0,000E+00           0,150         2,230E+02         0,40         2         2,009E+01         5,492E-01         0,000E+00	Mobilis of Elasticity (m)         Moison's Elasticity (MPa)         Foison's Ratio         Load Number         Vertical Load (MN)         Moizondal (Shest) Load (MPa)         Moizondal (Shest) Load (MPa)           0,050         1,360E+03         0,25         1         2,009E+01         5,492E-01         0,000E+00         0,000E+00           0,150         2,220E+02         0,40         2         2,009E+01         5,492E-01         0,000E+00         0,000E+00           0,150         2,200E+01         0,495         2         2,009E+01         5,492E-01         0,000E+00         0,000E+00	Mobilis of Plashidiy (n)         Modulus of Ratio         Vertical Poison's         Horizontal (Shear)           0,050         1,360E+03         0,25         1         2,003E+01         5,492E-01         0,000E+00         0,000E+00         1,079E-01           0,150         2,230E+02         0,40         2         2,003E+01         5,492E-01         0,000E+00         0,000E+00         1,079E-01           0,150         2,200E+02         0,40         2         2,003E+01         5,492E-01         0,000E+00         0,000E+00         1,079E-01	Mobilis of Plashidity (m)         Mobilis of Relaxidity (MPa)         Foison's Ratio         Load Number         Vertical Load (M)         Horizontal(Shest) (MPa)         Ratio         X- Cord (m)           0,050         1,260E+03         0,35         1         2,009E+01         5,492E-01         0,000E+00         1,079E-01         0,000E+00           0,150         2,230E+02         0,40         2         2,009E+01         5,492E-01         0,000E+00         1,079E-01         0,000E+00           0,150         2,230E+02         0,40         2         0,40         5,492E-01         0,000E+00         1,079E-01         0,000E+00	Mobilis of (m)         Mobilis of Relation/ (MPs)         Foison's Ratio         Lead Lead Number         Stress (cN)         Horizonds(Shest) (ABs)         Ratios (MPs)         X-Cord (m)         Y-Cord (m)           0,050         1,2560E+03         0,35         1         2,009E+01         5,492E-01         0,000E+00         1,079E-01         0,000E+00         1,079E-01         0,000E+00         1,619E-01           0,150         2,230E+02         0,40         2         2,009E+01         5,492E-01         0,000E+00         1,079E-01         0,000E+00         -1,619E-01           0,150         2,230E+02         0,40         2         2,009E+01         5,492E-01         0,000E+00         1,079E-01         0,000E+00         -1,619E-01

						Stresses			Strains			<b>Hisplacements</b>	
Position	Layer	X-Courd	Y-Coard	Depth.	xx	YY	ZZ	xx	YY	22	ux	UY	uz
Number	Number	(m)	(m)	(m)	(ATDa)	(AII:a)	(6 <b>1</b> 24)	pustrain.	pustrain.	pustrain.	(um)	(jan)	(jan)
1	1	0,000 <b>E+</b> 00	0,000E+00	0,000 <b>E+</b> 00	-4,763E-01	1,077E-01	0,000E+00	-3,779E+02	2,018E+02	9,484E+01	0,000 <b>E+</b> 00	0,000 <b>E+</b> 00	5,55 <b>4E+</b> 02
ź	1	0,000 <b>E+</b> 00	1,500E-01	0,000 <b>E+</b> 00	-1,214E+00	-1,113E+00	-5,492E-01	-4,652E+02	-3,644E+02	1,951E+02	0,000 <b>E+</b> 00	-1,588E+01	6,243E+02
3	1	0,000 <b>E+</b> 00	3,000E-01	0,000 <b>E+</b> 00	-3,707E-01	8,264E-03	0,000 <b>E+</b> 00	-2,747E+02	1,015E+02	9,326E+01	0,000 <b>E+</b> 00	-4,989E+01	4,489E+02
4	1	0,000 <b>E+</b> 00	6,000E-01	0,000 <b>E+</b> 00	-6,720E-02	2,422E-02	0,000 <b>E+</b> 00	-5,564E+01	3,510E+01	1,106E+01	0,000 <b>E+</b> 00	-2,943E+01	2,467E+02
5	1	0,000 <b>E+</b> 00	9,000E-01	0,000 <b>E+</b> 00	-2,378E-02	2,639E-02	0,000 <b>E+</b> 00	-2,428E+01	2,552E+01	-6,696E-01	0,000E+00	-2,040E+01	1,657E+02
6	1	0,000 <b>E+</b> 00	1,200E+00	0,000 <b>E+</b> 00	-9,833E-03	1,956E-02	0,000E+00	-1,226E+01	1,691E+01	-2,504E+00	0,000E+00	-1,409E+01	1,206E+02
7	1	0,000 <b>E+</b> 00	1,500E+00	0,000 <b>E+</b> 00	-4,852E-03	1,284E-02	0,000E+00	-6,871E+00	1,069E+01	-2,055E+00	0,000E+00	-1,000E+01	9,352E+01
8	1	0,000 <b>E+</b> 00	1,800E+00	0,000 <b>E+</b> 00	-2,890E-03	8, <b>141E-</b> 03	0,000E+00	-4,220E+00	6,730E+00	-1,351E+00	0,000E+00	-7,439E+00	7,618E+01
9	l	0,000 <b>E+</b> 00	2,100E+00	0,000 <b>E+</b> 00	-1,998E-03	5,203E-03	0,000E+00	-2,808E+00	4,340E+00	-8,248E-01	0,000E+00	-5,809E+00	6,437E+01
10	l	0,000 <b>E+</b> 00	2,400E+00	0,000 <b>E+</b> 00	-1,519E-03	3, <b>419E-</b> 03	0,000 <b>E+</b> 00	-1,997E+00	2,905 <b>E+</b> 00	-4,891E-01	0,000 <b>E+</b> 00	-4,739E+00	5,586 <b>E+01</b>

Figura 188. Resultados (reporte de salida) del programa BISAR 3.0, para cuenco de deflexiones (Progresiva: 24+475 Km. – Eje Y)

Igualmente, para el estudio en la progresiva 24+475 km. según el valor de r se grafica el cuenco de deflexiones, se aprecia la evolución descendiente de la deflexión a medida que se aumenta el valor de r, en la cual la deflexión máxima es de 0,6243 mm, menor del valor admisible 1,1616 mm, es decir que está dentro del parámetro. La deflexión en el eje de la simetría es menor por la influencia de distancia de la separación de las ruedas. Para el valor de r = 1,20 m la deflexión se reduce a 0,1206 mm. El comportamiento de la deflexión es de acuerdo a los valores de la tabla 110 y la gráfica se puede observar en la figura 189.

#### Tabla 110

Durate		Cana	Deflexio	nes
Punto	г, ш	Capa	Bisar (µm)	(mm)
1	0	1	5,554E+02	0,5554
2	0,15	1	6,243E+02	0,6243
3	0,30	1	4,489E+02	0,4489
4	0,60	1	2,467E+02	0,2467
5	0,90	1	1,657E+02	0,1657
6	1,20	1	1,206E+02	0,1206
7	1,50	1	9,352E+01	0,0935
8	1,8	1	7,618E+01	0,0762
9	2,10	1	6,437E+01	0,0644
10	2,40	1	5,586E+01	0,0559

Valores de cuenco de deflexiones método SHELL. (Progresiva: 24+475 Km.)



Figura 189. Cuenco de deflexiones método SHELL. (Progresiva: 24+475 Km. – Eje Y)

Cuarto punto de estudio: Progresiva 24+850 Km. Eje Y.

🛗 BISAR 3.	.0 - Bitume	n Stress Anal	ysis in Roads				
Project Edit	Copy From	Results Windo	w Help				
PROGRESIV	A 24+850 k	(MEJEY(r, n	n)			1	ĸ
Number of	Systems (1	-10): 1 🚔					
System De	escription:	PROGRESIVA	24+850 KM E	JEY (r.m)			
	Loads	Laver	5	Positions			
		20,0			S	ave Retrieve	
<u>S</u> elec	t Positions	for Standard D	ual Wheel	No.ol	Position En	tries (1-10): 10 🔺	
	Position			Z (doeth)			
	Number	Coordinate	Coordinate	Coordinate	No		
		(m)	(m)	(m)			
	1	0,0000	0,0000	0,0000	1		
	2	0,0000	0,1500	0,0000	1		
	3	0,0000	0,3000	0,0000	1		
	4	0,0000	0,6000	0,0000	1		
	5	0,0000	0,9000	0,0000	1		
	6	0,0000	1,2000	0,0000	1		
	7	0,0000	1,5000	0,0000	1		
	8	0,0000	1,8000	0,0000	1		
	9	0,0000	2,1000	0,0000	1		
	10	0,0000	2,4000	0,0000	1		
	_						

*Figura 190.* Información de entrada, posiciones para cuenco de deflexiones (Progresiva: 24+850 Km. – Eje Y)



# BISAR 3.0 - Block Report

# PROGRESIVA 24+850 KM EJE Y (r, m)

## System 1: PROGRESIVA 24+850 KM EJE Y (r, m)

Structure	•			Loads								
Layer Number	Daickness (m)	Mobilus af Elesticity (APa)	Paissan's Ratio	Load Number	Ven Load (kN)	iical Stress (AIPa)	Harizardal Load (kN)	l(Shear) Stress (hTPa)	Ratius (m)	X-Coard (m)	Y-Coard (m)	Shear Angle (Degrees)
1	0,050	1,360E+03	0,35	1	2,009E+01	5,492E-01	0,000 <b>E</b> +00	0,000 <b>E</b> +00	1,079E-01	0,000 <b>E+</b> 00	1,619E-01	0,000E+00
2 3 4	0,150 0,150	3,070E+02 2,230E+02 9,100E+01	0,37 0,40 0,45	ž	2,009E+01	5,4921-01	0,000£+00	0,000£+00	1,079E-01	0,000£400	-1,0105-01	0,000£+00

						Stresses			Statesing			<b>Hisplacements</b>	
Position	Layer	X-Courd	Y-Courd	Depth.	xx	YY	ZZ	xx	YY	ZZ	ux	UY	uz
Number	Nimber	(m)	(m)	(m)	(ATPa)	(ATPA)	(ATPa)	pustraiin.	pstrain.	µstrain.	(jan)	(jan)	(jan)
1	1	0,000 <b>E+</b> 00	0,000 <b>E+</b> 00	0,000 <b>E+</b> 00	-4,520E-01	1,302E-01	0,000E+00	-3,658E+02	2,120E+02	8,282 <b>E+01</b>	0,000E+00	0,000 <b>E+</b> 00	5,032E+02
ź	1	0,000 <b>E+</b> 00	1,500E-01	0,000 <b>E+</b> 00	-1,192E+00	-1,092E+00	-5,492E-01	-4,537E+02	-3,553 <b>E</b> +02	1,840E+02	0,000 <b>E+</b> 00	-1,440E+01	5,735E+02
3	1	0,000 <b>E+</b> 00	3,000E-01	0,000 <b>E+</b> 00	-3,519E-01	2,295E-02	0,000 <b>E+</b> 00	-2,647E+02	1,074E+02	8,466E+01	0,000 <b>E+</b> 00	-4,726E+01	4,020E+02
4	l	0,000 <b>E+</b> 00	6,000E-01	0,000 <b>E+</b> 00	-5,794E-02	2,684E-02	0,000 <b>E+</b> 00	-4,951E+01	3,465E+01	8,003 <b>E+</b> 00	0,000E+00	-2,607E+01	2,107E+02
5	1	0,000 <b>E+</b> 00	9,000E-01	0,000 <b>E+</b> 00	-1,994E-02	2,436E-02	0,000 <b>E+</b> 00	-2,093E+01	2,305E+01	-1,138E+00	0,000E+00	-1,757E+01	1,394E+02
6	1	0,000 <b>E+</b> 00	1,200E+00	0,000 <b>E+</b> 00	-8,274E-03	1,695E-02	0,000E+00	-1,044E+01	1,459E+01	-2,232E+00	0,000E+00	-1,199E+01	1,011E+02
7	1	0,000 <b>E+</b> 00	1,500E+00	0,000 <b>E+</b> 00	-4,194E-03	1,075E-02	0,000E+00	-5,849E+00	8,98 <b>1E+</b> 00	-1,686E+00	0,000E+00	-8,518E+00	7,854E+01
8	l	0,000 <b>E+</b> 00	1,800E+00	0,000 <b>E+</b> 00	-2,574E-03	6,697E-03	0,000E+00	-3,616E+00	5,587E+00	-1,061E+00	0,000E+00	-6,377E+00	6,414E+01
9	l	0,000 <b>E+</b> 00	2,100E+00	0,000 <b>E+</b> 00	-1,811E-03	4,263E-03	0,000E+00	-2,429E+00	3,601E+00	-6,311E-01	0,000E+00	-5,026E+00	5,432E+01
10	1	0,000 <b>E+</b> 00	2,400E+00	0,000 <b>E+</b> 00	-1,383E-03	2,8 <b>17E-</b> 03	0,000 <b>E+</b> 00	-1,742E+00	2,427E+00	-3,692E-01	0,000 <b>E+</b> 00	-4,136E+00	4,721E+01

Figura 191. Resultados (reporte de salida) del programa BISAR 3.0, para cuenco de deflexiones (Progresiva: 24+850 Km. – Eje Y)

Así pues, para el estudio en la progresiva 24+850 km. según el valor de r se grafica el cuenco de deflexiones, donde se aprecia la evolución descendiente de la deflexión a medida que se aumenta el valor de r, en la cual la deflexión máxima es de 0,5735 mm, menor del valor admisible 1,1616 mm, es decir que está dentro del parámetro. La deflexión en el eje de la simetría es menor, por la influencia de distancia de la separación de las ruedas. Para el valor de r = 1,20 m la deflexión se reduce a 0,1011 mm. El comportamiento de la deflexión es de acuerdo a los valores de la tabla 111 y la gráfica se puede observar en la figura 192.

<b>D</b> (		Capa -	Deflexiones		
Punto	r, m		Bisar (µm)	(mm)	
1	0	1	5,032E+02	0,5032	
2	0,15	1	5,735E+02	0,5735	
3	0,30	1	4,020E+02	0,4020	
4	0,60	1	2,107E+02	0,2107	
5	0,90	1	1,394E+02	0,1394	
6	1,20	1	1,011E+02	0,1011	
7	1,50	1	7,854E+01	0,0785	
8	1,8	1	6,414E+01	0,0641	
9	2,10	1	5,432E+01	0,0543	
10	2,40	1	4,721E+01	0,0472	



Figura 192. Cuenco de deflexiones método SHELL. (Progresiva: 24+850 Km. – Eje Y)

### 4.1.7 Recuperación elástica

Primer punto de estudio: Progresiva 23+275 Km. Eje X.

Por otra parte, para el estudio en la progresiva 23+275 km. el pavimento flexible es comprendida como una estructura con cierta capacidad para absorber como energía elástica potencial el trabajo de deformación impuesto por la carga sometida, en punto de estudio, distancia igual cero (D₀=0), se obtiene la flecha o deflexión máxima de 78 x10⁻² mm. Con desplazamiento lento del camión C2, a una velocidad menor de 3 km/h hacia adelante de manera continua, a una distancia de 4 a 5 m y dicha energía hace que, una vez retirada la carga, se produzca una recuperación elástica instantánea de la deformación, por lo que, la deflexión recuperable o elástica es de 77 x10⁻² mm. y la deflexión permanente o residual es mínima: 1 x10⁻² mm. Los valores se aprecian en la tabla 112 y las gráficas en las figuras 193 y 194.

Punto	Distancia cm	Capa	Deflexiones		
			(x10 ⁻² mm)	(mm)	
1	0	1	78	0,78	
2	25	1	46	0,46	
3	50	1	27	0,27	
4	75	1	16	0,16	
5	100	1	9	0,09	
6	200	1	5	0,05	
7	300	1	3	0,03	
8	400	1	2	0,02	
9	500	1	1	0,01	

Valores para recuperación elástica método CONREVIAL. (Progresiva: 23+275 Km)

Cálculo de recuperación elástica: Empleamos la ecuación (1)

$$d_t = d_r + d_p$$

Despejando:

$$d_r = d_t - d_p$$
  

$$d_r = 78 x \, 10^{-2} mm - 1 x \, 10^{-2} mm$$
  

$$d_r = 77 x \, 10^{-2} mm$$



*Figura 193.* Deflexiones en los puntos de estudio, método CONREVIAL. (Progresiva: 23+275 Km. – Eje X)



Figura 194. Recuperación elástica, método CONREVIAL. (Progresiva: 25+275 Km. - Eje X)

Segundo punto de estudio: Progresiva 23+750 Km, eje X.

En tal sentido, para el estudio en la progresiva 23+750 km. el pavimento flexible es comprendida como una estructura con cierta capacidad para absorber como energía elástica potencial el trabajo de deformación impuesto por la carga sometida, en punto de estudio, distancia igual cero (D₀=0), se obtiene la flecha o deflexión máxima de 80 x10⁻² mm. Con desplazamiento lento del camión C2, a una velocidad menor de 3 km/h hacia adelante de manera continua, a una distancia de 5 a 6 m y dicha energía hace que, una vez retirada la carga, se produzca una recuperación elástica instantánea de la deformación, por lo que, la deflexión recuperable o elástica es de 78 x10⁻² mm. y la deflexión permanente o residual es mínima: 2 x10⁻² mm. Los valores se aprecian en la tabla 113 y las gráficas en las figuras 195 y 196.

### Tabla 113

Punto	Distancia cm	Capa	Deflexiones		
			(x10 ⁻² mm)	( <b>mm</b> )	
1	0	1	80	0,80	
2	25	1	47	0,47	
3	50	1	35	0,35	
4	75	1	21	0,21	
5	100	1	12	0,12	
6	200	1	8	0,08	
7	300	1	6	0,06	
8	400	1	4	0,04	
9	500	1	2	0,02	
10	600	1	2	0,02	

Valores para recuperación elástica, método CONREVIAL. (Progresiva: 23+750 Km)

Cálculo de recuperación elástica: Empleamos la ecuación (1)

 $d_t = d_r + d_p$ 

Despejando:

 $d_r = d_t - d_p$   $d_r = 80 x 10^{-2} mm - 2 x 10^{-2} mm$  $d_r = 78 x 10^{-2} mm$ 



*Figura 195.* Deflexiones en los puntos de estudio, método CONREVIAL. (Progresiva: 23+750 Km. – Eje X)



Figura 196. Recuperación elástica, método CONREVIAL. (Progresiva: 23+750 Km. – Eje X)

Tercer punto de estudio: Progresiva 24+475 Km, eje X.

De manera similar, para el estudio en la progresiva 24+475 km. el pavimento flexible es comprendida como una estructura con cierta capacidad para absorber como energía elástica potencial el trabajo de deformación impuesto por la carga sometida, en punto de estudio, distancia igual cero (D₀=0), se obtiene la flecha o deflexión máxima de 88 x10⁻² mm. Con desplazamiento lento del camión C2, a una velocidad menor de 3 km/h hacia adelante de manera continua, a una distancia de 6 a 7 m y dicha energía hace que, una vez retirada la carga, se produzca una recuperación elástica instantánea de la deformación, por lo que, la deflexión recuperable o elástica es de 86 x10⁻² mm. y la deflexión permanente o residual es mínima: 2 x10⁻² mm. Los valores se aprecian en la tabla 114 y las gráficas en las figuras 197 y 198.

Punto	Distancia cm	Capa	Deflexiones		
			(x10 ⁻² mm)	( <b>mm</b> )	
1	0	1	88	0,88	
2	25	1	53	0,53	
3	50	1	32	0,32	
4	75	1	20	0,20	
5	100	1	12	0,12	
6	200	1	9	0,09	
7	300	1	7	0,07	
8	400	1	4	0,04	
9	500	1	3	0,03	
10	600	1	2	0,02	
11	700	1	2	0,02	

Valores para recuperación elástica método CONREVIAL. (Progresiva: 24+475 Km)

Cálculo de recuperación elástica: Empleamos la ecuación (1)

$$d_t = d_r + d_p$$

Despejando:

$$d_r = d_t - d_p$$
  

$$d_r = 88 x \, 10^{-2} mm - 2 x \, 10^{-2} mm$$
  

$$d_r = 86 x \, 10^{-2} mm.$$



*Figura 197.* Deflexiones en los puntos de estudio, método CONREVIAL. (Progresiva: 24+475 Km. – Eje X)



Figura 198. Recuperación elástica, método CONREVIAL. (Progresiva: 24+475 Km. - Eje X)

Cuarto punto de estudio: Progresiva 24+850 Km, eje X.

Asimismo, para el estudio en la progresiva 24+850 km. el pavimento flexible es comprendida como una estructura con cierta capacidad para absorber como energía elástica potencial el trabajo de deformación impuesto por la carga sometida, en punto de estudio, distancia igual cero (D₀=0), se obtiene la flecha o deflexión máxima de 96 x10⁻² mm. Con desplazamiento lento del camión C2, a una velocidad menor de 3 km/h hacia adelante de manera continua, a una distancia de 7 a 8 m y dicha energía hace que, una vez retirada la carga, se produzca una recuperación elástica instantánea de la deformación, por lo que, la deflexión recuperable o elástica es de 94 x10⁻² mm. y la deflexión permanente o residual es mínima: 2 x10⁻ 2 mm. Los valores se aprecian en la tabla 115 y las gráficas en las figuras 199 y 200.

### Tabla 115

Punto	Distancia cm	Сара	Deflexiones		
			(x10 ⁻² mm)	( <b>mm</b> )	
1	0	1	96	0,96	
2	25	1	57	0,57	
3	50	1	34	0,34	
4	75	1	20	0,20	
5	100	1	12	0,12	
6	200	1	9	0,09	
7	300	1	7	0,07	
8	400	1	5	0,05	
9	500	1	4	0,04	
10	600	1	3	0,03	
11	700	1	2	0,02	
12	800	1	2	0,02	

Valores para recuperación elástica método CONREVIAL. (Progresiva: 24+850 Km)

Cálculo de recuperación elástica: Empleamos la ecuación (1)

 $d_t = d_r + d_p$ 

Despejando:

$$d_r = d_t - d_p$$
  

$$d_r = 96 x \, 10^{-2} mm - 2 x \, 10^{-2} mm$$
  

$$d_r = 94 x \, 10^{-2} mm.$$



*Figura 199.* Deflexiones en los puntos de estudio, método CONREVIAL. (Progresiva: 24+850 Km. – Eje X)



Figura 200. Recuperación elástica, método CONREVIAL. (Progresiva: 24+850 Km. – Eje X)

## 4.1.8 Comportamiento de deflexiones a segundo año de serviciabilidad,

# método CONREVIAL

Primer punto de estudio: Progresiva 23+275 Km, eje X

#### Tabla 116

Valores de deflexiones a segundo año, método CONREVIAL. (Progresiva: 23+275 Km. Eje X)

	Distancia		Deflexiones a segundo año de servicio			
Punto	cm	Сара	2018 (x10 ⁻² mm)	2019 (x10 ⁻² mm)	2020 (x10 ⁻² mm)	
1	0	1	72	78	88	
2	25	1	42	46	52	
3	50	1	24	27	30	
4	75	1	14	16	18	
5	100	1	8	9	10	



*Figura 201.* Cuenco de deflexiones a segundo año de serviciabilidad, método CONREVIAL. (Progresiva: 23+275 Km. – Eje X)

#### Tabla 117

Valores de deflexiones en 3 años, método CONREVIAL. (Progresiva: 23+750 Km. Eje X)

Punto I	Dictoncio		Deflexiones a segundo año de servicio			
	cm	Сара	2018 (x10 ⁻² mm)	2019 (x10 ⁻² mm)	2020 (x10 ⁻² mm)	
1	0	1	76	80	90	
2	25	1	45	47	53	
3	50	1	27	35	39	
4	75	1	16	21	24	
5	100	1	9	12	14	



*Figura 202.* Cuenco de deflexiones a segundo año de serviciabilidad, método CONREVIAL. (Progresiva: 23+750 Km. – Eje X)
Tercer punto de estudio: Progresiva 24+475 Km, eje X.

## Tabla 118

Valores de deflexiones en 3 años, método CONREVIAL. (Progresiva: 24+475 Km. Eje X)

	Distancia cm		Deflexiones a segundo año de servicio			
Punto		Capa	2018 (x10 ⁻² mm)	2019 (x10 ⁻² mm)	2020 (x10 ⁻² mm)	
1	0	1	87	88	99	
2	25	1	52	53	60	
3	50	1	31	32	36	
4	75	1	19	20	23	
5	100	1	11	12	14	



*Figura 203.* Cuenco de deflexiones a segundo año de serviciabilidad, método CONREVIAL. (Progresiva: 24+475 Km. – Eje X)

Cuarto punto de estudio: Progresiva 24+850 Km, eje X.

#### Tabla 119

Valores de deflexiones en 3 años, método CONREVIAL. (Progresiva: 24+850 Km. Eje X)

	Distancia cm		Deflexiones a segundo año de servicio			
Punto		Сара	2018 (x10 ⁻² mm)	2019 (x10 ⁻² mm)	2020 (x10 ⁻² mm)	
1	0	1	94	96	108	
2	25	1	55	57	64	
3	50	1	32	34	38	
4	75	1	19	20	23	
5	100	1	11	12	14	



*Figura 204.* Cuenco de deflexiones a segundo año de serviciabilidad, método CONREVIAL. (Progresiva: 24+850 Km. – Eje X)

#### Tabla 120

. ~	Distancia cm	Capa -	Deflexiones promedio		
Ano			(x10 ⁻² mm)		
2018	0	1	85,25		
2019	0	1	85,50		
2020	0	1	96,25		

Valores de deflexiones promedios a segundo año, método CONREVIAL. (Tramo: 2 Km)



*Figura 205.* Correlación deflexiones vs. Tiempo, a segundo año de serviciabilidad, método CONREVIAL (Tramo 2 Km. – Eje X)

- El periodo de comportamiento y el correspondiente tráfico de diseño deben reflejar la experiencia en la vida real. El periodo de comportamiento no debe ser confundido con la vida de pavimento.
- El diseño de la carpeta asfáltica In situ fue calculado para 5 años.
- Por consiguiente la predicción de vida útil del pavimento según análisis será de

3,8 años de serviciabilidad, debiendo ser 5 años.

- El pavimento llega a su falla máxima, solo obteniendo un 76% de su capacidad óptima según diseño. Existe una deficiencia de serviciabilidad (resistencia) de 24%.
- Por lo que requiere un mantenimiento prematuro a 3,8 años de serviciabilidad.

#### 4.2 Contrastación de hipótesis

Para determinar la contrastación de hipótesis se aplicó la prueba de normalidad; es decir, cuando la muestra "n<50" se realiza a través de Shapiro Wilk y cuando la muestra "n>50" se realiza mediante Kolmogorov Smirnov. En vista que los datos provienen de una distribución normal, por lo que se utilizó la prueba de hipótesis de una muestra mediante la prueba "t" Student. Cabe resaltar que la muestra de HE1 y HE2 es "n>50" y la muestra de HE3 es "n<50".



Figura 206. Distribución de "t" Student

Regla de decisión:

- Si P > 0,05 Entonces no rechazo la hipótesis nula, rechazando la alterna.
- Si P  $\leq$  0,05 Entonces rechazo la hipótesis nula, acepto la hipótesis alterna.

## 4.2.1 Hipótesis específicas 1.

Las deflexiones medidas con Viga Benkelman en la red vial Moquegua MO-108 (2 Km.) cumplen con el parámetro de deflexión admisible.

Hipótesis nula (Ho): Las deflexiones medidas con Viga Benkelman en la red vial Moquegua MO-108 (2 Km.) No están dentro de parámetro de deflexión Admisible.

Hipótesis alterna (H1): Las deflexiones medidas con Viga Benkelman en la red vialMoquegua MO-108 (2 Km.) cumplen con el parámetro de deflexión admisible.Significancia :

	α	: 0,05
	α/2	: 0,025
Media		: 57,95
Desviación estándar		: 13,3100927
Varianza		: 177,158568
Numero de datos		: 81
Grado de libertad		: 80
t experimental		: - 35,2215648
t teórico (una cola)		: 1,99006342
P Valor (una cola)		: 9,0059E-51

Según valor P es menor al 5%, por lo que RECHAZAMOS la hipótesis nula, acepto la hipótesis alterna.

### 4.2.2 Hipótesis específicas 2.

El Tipo de cuenco de deflexiones de la estructura del pavimento en la red vial Moquegua MO-108 (2 Km.). Es de Tipo I, (curva extensa y poco profunda).

Hipótesis nula (Ho): El tipo de cuenco de deflexiones de la estructura del pavimento en la red vial Moquegua MO-108 (2 Km.) no es de tipo I, (curva extensa y poco profunda).

Hipótesis alterna (H1): El tipo de cuenco de deflexiones de la estructura del pavimento en la red vial Moquegua MO-108 (2 Km.) es de tipo I (curva extensa y poco profunda).

:

Significancia

	α	: 0,05
	α/2	: 0,025
Media		: 138,96
Desviación estándar		: 34,0245587
Varianza		: 1157,67059
Numero de datos		: 81
Grado de libertad		: 80
t experimental		: - 35,2643812
t teórico (una cola)		: 1,99006342
P Valor (una cola)		: 8,2194E-51

Según valor P es menor al 5%, por lo que RECHAZAMOS la hipótesis nula, acepto la hipótesis alterna.

### 4.2.3 Hipótesis específicas 3.

La recuperación elástica de la estructura del pavimento en la red vial Moquegua MO-108 (2 Km.) luego de la carga sometida no es al 100%.

Hipótesis nula (Ho): La recuperación elástica de la estructura del pavimento en la red vial Moquegua MO-108 (2 Km.) luego de la carga sometida no es al 100%.

Hipótesis alterna (H1): La recuperación elástica de la estructura del pavimento en la red vial Moquegua MO-108 (2 Km.) es óptimo al 100%, después de la carga aplicada.

:

Significancia

	α	: 0,05
	α/2	: 0,025
Media		: 97,97%
Desviación estándar		: 0,00529782
Varianza		: 2,8067E-05
Numero de datos		: 4
Grado de libertad		: 3
t experimental		: - 0,89374394
t teórico (una cola)		: 3,18244631
P Valor (una cola)		: 0,21865538

Según valor P es mayor al 5%, por lo que NO RECHAZAMOS la hipótesis nula, rechazando la hipótesis alterna.

### 4.3 Discusión de resultados

#### 4.3.1 Determinación de deflexiones.

Por el Método CONREVIAL se realizó el estudio de las deformaciones verticales de la superficie del pavimento de un carril, a consecuencia de la acción de una determinada solicitación de carga, cuya evaluación estructural por deflectometría de 81 segmentos, las deflexiones corregidas o determinadas y la deflexión característica 75,02  $\times 10^{-2}$  mm., están dentro el parámetro y deflexión admisible 133,5  $\times 10^{-2}$  mm., cabe resaltar que la deflexión admisible está por debajo de la deflexión crítica, cumpliendo con el control de deflexión. El estudio complementario se realizó con las deflexiones máximas altas verticales, en los cuatro puntos de estudio (progresiva: 23+275, 23+750, 24+475 y 24+850 Km.) es decir a un año de serviciabilidad es mayor que las deflexiones post colocado de la carpeta asfáltica (cero años de servicio), los valores de las deflexiones determinadas se pueden apreciar en las tablas 116, 117, 118 y 119., a un año de serviciabilidad, son mayores con respecto al método SHELL.

Como se puede inferir, la deflexión característica se definió según tipo de carretera de acuerdo el cuadro 12,22 del manual de carreteras MTC 2014, las deflexiones características y admisibles, se comparan mediante un análisis combinado de los resultados de la evaluación, de acuerdo el cuadro 12,23 del manual mencionado. Para apreciar a mayor detalle, ver apéndice 6.

Entonces, la deflexión característica resulta ser inferior a la admisible, pero hay fallas de origen estructural de tipo (Fallas por fatiga – inicios de piel de cocodrilo), tal cual se aprecia en la figura 2. La radio curvatura pequeño (menor a 80 m) se presenta en un punto, de los cuatro puntos de estudio, es decir, en la progresiva: 24+850 Km. cuyo radio curvatura es de 79 m. por lo que se acercaría en el cuadro indicado, el tercer caso. (En este caso los radios de curvatura de la línea de deflexión son reducidos y el desarrollo de fisuramiento en forma de piel de cocodrilo es posible aún con deflexiones admisibles). De acuerdo al cuadro 12,26 MC-MTC 2014, el procedimiento preventivo sería sellado de fisuras. Según ASSHTO recomienda en tratamiento superficial. Para apreciar a mayor detalle (ver apéndice 7).

Mientras tanto, por el Método SHELL se realiza el comportamiento estructural y funcional a través de determinación del esfuerzos, deformaciones y deflexiones que deben ser admisibles del modelo estructural con la finalidad de asegurar dicho comportamiento, por medio de este método se define los controles de deformación o ahuellamiento, fatiga y deflexión. Los parámetros de verificación de los valores de servicio y admisibles en eje X (vista lateral) se pueden observar en la tablas 39, 40, 41 y 42. En eje Y (vista frontal) en las tablas 47, 48, 49 y 50. En los cuatro puntos de estudio (progresiva: 23+275, 23+750, 24+475 y 24+850 Km.) las deflexiones verticales son menores con respecto al método CONREVIAL.

La comparación de resultados obtenidos por métodos CONREVIAL y SHELL en eje X (vista lateral) se aprecian en las tablas 43, 44, 45 y 46.

#### 4.3.2 Cuenco de deflexiones.

Mediante el método CONREVIAL los valores de las deflexiones están dentro el parámetro. Es decir, debajo de la deflexión admisible  $133,5 \times 10^{-2}$  mm. se graficó el cuenco deflexiones de 81 segmentos de un tramo de 2 km, con valores de deflexión promedio 57,95 x10⁻² mm.; por otro lado, tenemos radio curvatura promedio de 138,96 m, el cual es > 100 m. tal cual se indica en la tabla 28, 99 y la figura 164. Dicha interpretación se traduce en una curva extensa poco profunda y tipo de deflexión es de tipo I (buen subrasante y buen pavimento).

En consecuencia, con respecto a los 4 puntos de estudios complementarios de las deflexiones máximas (deflexiones altas), los cuales están dentro del parámetro de deflexión admisible y la radio curvatura es menor < 100 m, la razón por el cual se realiza dicha evaluación, a fin de apreciar su comportamiento. Las gráficas están de acuerdo los valores de las tablas 100, 102, 104 y 106. Y en las figuras 165, 169, 173 y 177. Correspondiente a las (progresiva: 23+275, 23+750, 24+475 y 24+850 Km). Además, se aprecian las gráficas de los cuencos a segundo año de servicialidad, en las figuras 201, 202, 203 y 204.

Por otra parte, mediante el método SHELL los valores de la deflexión máxima en eje X (vista lateral) y en eje Y (vista frontal) están dentro el parámetro. Es decir, debajo de la deflexión admisible 1,1616 mm. se puede observar los resultados de los valores en eje X en las tablas 101, 103, 105 y 107. En las figuras 168, 172, 176 y 180. Los resultados de los valores en eje Y en las tablas 108, 109,

110 y 111. En las figuras 183, 186, 189 y 192. En los cuatro puntos de estudio (progresiva: 23+275, 23+750, 24+475 y 24+850 Km).

## 4.3.3 Recuperación elástica.

Según método CONREVIAL la deflexión es de carácter elástico, por el mismo que desaparecen en cuanto se renueve la carga aplicada. La deflexión recuperable, es decir en la deformabilidad de las estructuras, su recuperación por elasticidad debe ser instantánea y retardada, hasta volver a su estado de normalidad. Pero también intervienen deformaciones plásticos, son permanentes, y su acumulación a través de las reiteraciones esfuerzos de las cargas produce las distorsiones o ahuellamientos en la superficie del pavimento.

Sin duda, de acuerdo al estudio realizado con respecto a la recuperación elástica se tomó en consideración los 4 puntos de deflexión máxima, es decir un segmento cada 500 metros longitudinales, a fin de evaluar los comportamientos de recuperación elástica o remanente. En la tabla 121 se aprecia el valor promedio en la cual representa el 97,97% de deflexión recuperable elástica y el 2,03% de deflexión permanente.

## Tabla 121

Prog. (Km.) _	Deflexiones Máx. (dt)	Deflexiones recuperable (dr)	Deflexiones permanente (dp)	(dr/dt)	(dp/dt)
	(x10 ⁻² mm)	(x10 ⁻² mm)	(x10 ⁻² mm)	(%)	(%)
23+275	78	77	1	98,72	1,28
23+750	80	78	2	97,50	2,50
24+475	88	86	2	97,73	2,27
24+850	96	94	2	97,92	2,08
Valor Prom.	85,50	83,75	1,75	97,97	2,03

Valores de recuperación elástica y permanentes, método CONREVIAL. (Tramo: 2 Km)

## **CAPÍTULO V**

## **CONCLUSIONES Y RECOMENDACIONES**

#### 5.1 Conclusiones

- **Primera.** Se determina el buen comportamiento de la subrasante y del pavimento, evaluado mediante método CONREVIAL, por la confiabilidad del método estadístico. Por el método SHELL se determinó que cumple el control de deflexión; el esfuerzo y deformación vertical de compresión sobre la sub rasante cumplen con control de ahuellamiento; pero la deformación radial de tracción en la base de la capa asfáltica no cumple el control de fatiga. Lo cual requiere mantenimiento prematuro a 3,8 años con reparación sellado de fisuras.
- Segunda. Se determinaron las deflexiones en el carril derecho de la vía, de un tramo de 2 Km, obteniéndose los valores, por método CONREVIAL, deflexión característica: 75,02 x 10⁻² mm, deflexión crítica: 137 x 10⁻² mm, Deflexión admisible: 133,5 x 10⁻² mm. Las deflexiones por método SHELL se obtuvo; Deflexión admisible: 1,1616 mm, La magnitud de la deflexión en estructuras de pavimento generalmente es muy pequeña menor a 1,5 mm, para el diseño la deflexión máxima es menor de 1 mm.

- Tercera. Se determina, el 100% de deflexión corregida cumple con la deflexión admisible D < Da y el 92.6% de radio curvatura cumple con el parámetro Rc > 100 m. Por lo que, el tipo de deflexiones es de tipo I (curva extensa poco profunda), con un buen comportamiento de la subrasante y del pavimento. Por el método SHELL nos permite saber la importancia de conocer la magnitud de la deflexión para poder analizar el efecto de la tracción en la base de las capas asfálticas, en ejes X e Y.
- **Cuarta.** Se ha determinado que la deflexión recuperable o elástica de 97.97% y una deflexión permanente o residual de 2.03%; es decir, la deflexión elástica es cercano al (100%) porque se produce una recuperación elástica instantánea, obtenidos por método CONREVIAL. La metodología de SHELL se basó a teoría elástica de BURMISTER de sistemas de multicapas de comportamiento elástico, donde el material de cada capa es homogéneo, isotrópico y linealmente elástico.

### **5.2 Recomendaciones**

- Primera. Se recomienda garantizar el comportamiento satisfactorio de pavimento en relación a tráfico que debe soportar las deflexiones determinadas que deben ser inferior a la deflexión admisible y tolerable según la norma MTC 2014 a los actores responsables del Ministerio de Transportes y Comunicaciones. Además, deben emplear el método SHELL, que permite evaluar y analizar el estudio más completo para obtener valores de cada capa del comportamiento del modelo estructural del pavimento flexible.
- Segunda. Se recomienda tomar en cuenta la magnitud de la deflexión en criterios técnicos que se deben cumplir para el diseño de estructuras de pavimento flexibles, de manera que, se asegure el comportamiento estructural y funcional durante el periodo de servicio. Así, como el cuenco de deflexiones debe ser de una curva extensa poco profunda, lo cual poseen un buen comportamiento de la subrasante y un buen comportamiento estructural del pavimento, en vista que representan una deflexión pequeña y una radio de curvatura mediana; en última instancia, para la evaluación estructural del pavimento.
- **Tercera.** Se recomienda determinar las deflexiones recuperables y elásticas, a ser un factor importantísimo en la fase de evaluación para el mantenimiento y rehabilitación del pavimento, en vista de que el valor de dicha deflexión se usa para el refuerzo del paquete estructural del pavimento. Realizar

mantenimiento y rehabilitación continua de las estructuras del pavimento flexible es de vital importancia a lo largo de su vida útil, a fin de prolongar la vida del mismo, en vista de que se van deteriorando en el tiempo y con el incremento gradual del tráfico de vehículos.

- **Cuarta.** Se recomienda realizar seguimiento periódico a fin de prevenir los periodos de mantenimiento, para evitar los altos costos a las entidades encargadas de la administración vial MTC, PROVIAS Nacional, descentralizado y Concesionarios.
- Quinta. Se recomienda tomar decisiones acertadas en cuanto al periodo adecuado de mantenimiento, la calibración de los equipos a utilizar (deformimetro, viga Benkelman) y cuente con certificado de calibración, a fin de que nos brinde medidas reales para su cometido.
- Sexta. Se recomienda realizar estudios posteriores en concordancia con las normas: ASSHTO: T 256-01, ASTM D 4695-03, MTC E 1002 -2016, MTC 2014, CONREVIAL y SHELL.

# **REFERENCIAS BIBLIOGRÁFICAS**

- AASHTO (1993). *Guía AASHTO para diseño de estructuras de pavimentos*. USA: American Association of State and Transportation Highway Officials.
- Ávila, E. y Albarracín, F. (2014). Evaluación de pavimentos no destructivos y análisis inverso caso de estudio: Vía Chicti – Sevilla de Oro (Tesis de pregrado). Universidad de Cuenca, Cuenca, Ecuador. Recuperado de http://dspace.ucuenca.edu.ec/handle/123456789/5309
- Balarezo, J. (2017). Evaluación estructural usando viga benkelman aplicada a un pavimento (Tesis de pregrado). Universidad de Piura, Piura, Perú. Recuperado de https://hdl.handle.net/11042/3135
- Barrios, C. A. (2016). Evaluación, deformación y rehabilitación viral cruce Panamericana Sur, Rotonda-Ovalo Cementerio, Binacional en la Región Moquegua (Tesis de pregrado). Universidad Alas Peruanas, Moquegua, Perú.
- Beltrán, G. I. (2012). Evaluación estructural de pavimento flexible con métodos de inteligencia artificial y auscultación no destructiva (Doctora en Ingeniería). Universidad Nacional Autónoma, Ciudad de México, México.
  Recuperado de

http://132.248.52.100:8080/xmlui/handle/132.248.52.100/5145

Bonnet, G. E. (2014). Guía de procesos constructivos de una vía en pavimento flexible. Universisdad Militar Nueva Granada, Bogotá, Colombía. Recuperado http://hdl.handle.net/10654/12010

- Carahuatay, R. E. (2015). Determinación del comportamiento estructural del pavimento flexible de la carretera San Migue Pablo, tramo San Miguel Sunuden; mediante el análisis deflectométrico (Tesis de pregrado).
  Universidad nacional de Cajamarca, Cajamarca, Perú. Recuperado de http://repositorio.unc.edu.pe/handle/UNC/489
- Chávez, C. M., Echeverría, J. O., Iriondo, V.H. (2018). Modelación multicapa elástica de pavimentos flexibles en el Salvador mediante la aplicación de Software (Tesis de pregrado). Universidad de el Salvador, San Salvador. Recuperado de http://ri.ues.edu.sv
- Conza, D. G. (2016). Evaluación de las fallas de la carpeta asfáltica mediante el método PCI en la AV. Circunvalación Oeste de Juliaca (Tesis de maestría).
  Universidad Peruana Unión, Juliaca, Perú. Recuperado de http://hdl.handle.net/20.500.12840/647
- Cordero, M. O., y Bravo, J. E. (2018). Análisis estructural del pavimento flexible en la calle la Prensa entre By pass y avenida las Orquídeas del Cantón Portoviejo (Tesis de pregrado). Universidad estatal del sur de Manabí, Manabí, Ecuador. Recuperado de http://repositorio.unesum.edu.ec/handle/53000/1402
- Croney, D., y Croney, P. (1992). *The design and performance of road pavements* (Segunda edición). Reino Unido. McGraw Hill.
- Das, B. M. (2001). Fundamentos de la ingeniería geotécnica. Puebla, México: Thomson Editores, S.A.
- Cubas, R. B. (2017). Comportamiento estructural del pavimento flexible en la vía de evitamiento sur – Cajamarca utilizando las deflexiones medidas con la

*viga Benkelman (Tesis de pregrado).* Universidad privada del norte, Cajamarca, Perú. Recuperado de http://hdl.handle.net/11537/11193

- Fernández, M. A. (2020). Determinación del comportamiento estructural del pavimento flexible de la carretera Cajamarca- Celendín-Balsas, tramo Chaquilpampa Santa Rosa de Chaquil, mediante el análisis deflectométrico (Tesis de pregrado). Universidad Nacional de Cajamarca, Cajamarca, Perú. Recuperado de http://repositorio.unc.edu.pe/handle/UNC/3733
- Flores, L. (2012). Evaluación estructural de pavimentos flexibles de carreteras de bajo volumen de tránsito (Tesis de maestría). Universidad Nacional de Ingeniería, Lima, Perú. Recuperado de http://cybertesis.uni.edu.pe/handle/uni/1136
- Geronimo, M. A. (2020). Determinación del módulo elástico a partir del ensayo de Relación de Soporte de California (CBR) y la ecuación de la teoría de la elasticidad del ensayo de Placa de Carga para los finos de subrasante de los pavimentos flexibles (Tesis de pregrado). Universidad Peruana Unión, Lima, Perú. http://hdl.handle.net/20.500.12840/3092
- Gobierno Regional Moquegua (2013). Mejoramiento de la red vial departamental Moquegua – Arequipa, tramo MO-108: Cruz de flores, distritos Torata, Omate, Coalaque, Puquina, límite departamental pampa Usuña, Moquegua; Tramo AR-118: distritos Polobaya, Mollebaya, Arequipa. Moquegua, Perú.
- Higuera, C. H. (2006). Comportamieto de los estados tensionales de una estructura del pavimento flexible. *Revista ingeniería UPTC, vol, 15,* 22-23.

- Higuera, C. H. (2011). Nociones sobre métodos de diseño de estructuras de pavimentos para carreteras: Principios fundamentales, el tránsito, factores climáticos y geotecnia vial (Vol. I). Tunja, Colombia: UPTC.
- Higuera, C. H. (2012). Comportamiento estructural de un pavimento flexible, esfuerzo, deformaciones y deflexiones (Vol. 5), pp. 8-15: GRINFRAVIAL, Grupo de Investigación y Desarrollo en Infraestructura Vial. Tunja, Colombia: UTC. Recuperado de https://www.google.com.pe/search?biw=1366&bih=655&sxsrf=ALeKk02 zRaJ8VHLe0UgtMUdbVbQQPBXnA%3A1609719824142&ei=EGDyX6 mQCMXN5OUPyfev0Aw&q=comportamiento+estructural+de+un+pavim ento+flexible%2C+esfuerzo%2C+deformaciones+y+deflexiones%3A&oq =&gs_lcp=CgZwc3ktYWIQARgCMgcIIxDqAhAnMgcIIxDqAhAnMgcII xDqAhAnMgcIIxDqAhAnMgcIIxDqAhAnMgcIIxDqAhAnMgcIIxDqAh AnMgcIIxDqAhAnMgcIIxDqAhAnMgcIIxDqAhAnUIs9WIVJYJKGAW gBcAF4AIABywiIAcsIkgEDNy0xmAEBoAECoAEBqgEHZ3dzLXdper ABCsABAQ&sclient=psy-ab
- Higuera, C. H. (2016). Mecánica de pavimentos: Principios básicos. Tunja, Colombia: UPTC.
- Hoffman, M. S. y Del Aguila, P. M. (1985). Estudio de evaluación estructural de pavimentos basados en la interpretación de curvas de deflexión (Ensayos no destructivos). Lima, Perú.
- Instituto Mexicano del transporte (2018). *Teorías para calcular esfuerzo, deformaciones y deflexiones en pavimentos flexibles: un enfoque mecanicista,* San Fandila, Querétaro, México.

- International Society For Soil Mechanics And Geotechnical Engineering (2016). Correlation between the results of the PLT and CBR test to determine the elasticity modulus: ISSMGE.
- Jaen, C. S. y Ticona, J. D. (2019). Análisis deflectométrico por etapas y comparación con el tipo de material de cada capa estructural en la obra construcción y mejoramiento de la carretera Matarani-Punta de Bonbón tramo km 2+000 al km 7+000 (Tesis de pregrado). Universidad nacional de San Agustín, Arequipa, Perú. Recuperado de http://repositorio.unsa.edu.pe/handle/UNSA/9279
- López, J. S. (2016). El diseño de pavimentos flexibles, su comportamiento estructural, e incidencia en el deterioro temprano de la red vial en la provincia de Tungurahua (Tesis de maestría).Universidad Técnica de Ambato, Ambato, Ecuador. Recuperado de https://repositorio.uta.edu.ec/jspui/handle/123456789/22518
- Minaya, S. y Ordóñez, A. (2006). Diseño moderno de pavimentos asfálticos (Segunda edición.). Lima, Perú: ICG.
- Ministerio de transportes y comunicaciones (1982). Estudio de rehabilitación de carreteras en el País, Aspectos de evaluación de pavimentos, CONREVIAL, Lima, Perú.
- Ministerio de transportes y comunicaciones (2013). Manual de carreteras Especificaciones técnicas generales para construcción EG-2013 R.D. N° 22-2013-MTC/14. Lima, Perú.

- Ministerio de transportes y comunicaciones (2014). Manual de carreteras, sección suelos y pavimentos R.D. N° 10-2014-MTC/14. Lima, Perú: Servicios gráficos Squadrito EIRL.
- Ministerio de transportes y comunicaciones (2016). Manual de ensayo de materiales R.D. N° 18-2016-MTC/14. Lima, Perú.
- Ministerio de transportes y comunicaciones (2017). Inventario vial- Emp. PE-36A
   (Torata) Otora Jaguay Omate Coalaque Puquina L.D Moquegua
   MO 108. Lima, Perú.
- Montejo, A. (2002). *Ingeniería de pavimentos para carretera (Segunda edición)*. Colombia: Univerdidad Cátólica de Colomba - Agora.
- Quiñonez, D. G. (2015). Uso del Deflectómetro del Impacto Liviano (LWD), Para la Aplicación del Retrocálculo en Carreterras no Asfaltadas, Caso Práctico: Proyecto Regional Curzco (Tesis de pregrado). Universidad Nacional de Ingeniería, Lima, Perú. Recuperado de

http://cybertesis.uni.edu.pe/handle/uni/4387

- Ramos, W. (2017). Evaluación del estado del pavimento por deflectometría e índice de rugosidad internacional de la carretera: Puno Vilque Mañazo 4 km críticos 2015 (Tesis de pregrado). Universidad nacional del Altiplano, Puno, Perú. Recuperado de http://repositorio.unap.edu.pe/handle/UNAP/5094
- Rengifo, K. K. H. (2014). Diseño de los pavimentos de la nueva carrtera panamericana norte en el tramo de Huacho a Pativilca (KM 188 a 189) (Tesis de pregrado). Pontificia Universidad Católica del Perú, Lima, Perú. Recuperado de http://hdl.handle.net/20.500.12404/5826

- Sánchez, F. J. (2012). Blog de conceptos y aplicaciones de la tecnología RAMCODES en suelos y mezclas Asfálticas: RAMCODES, Rational Methodology for Compacted Geomaterial's Density and Strength analysis.
  Recuperado de http://blogramcodes.blogspot.com/2012/08/cual-es-elmodulo-de-una-mac-marshall.html
- Shell Interntional Petroleum Company Limited (1998). Programa BISAR 3.0. Londres.
- Sotil, A. (2016). Esfuerzos y deformaciones en pavimentos flexibles, pp. 03-15.
   Recuperado de https://es.slideshare.net/RibBrian/0400-esfuerzos-ydeformaciones-en-pavimentos-flexibles.
- Vásquez, L. R. (2015). Métodos de Análisis: Esfuerzos, deformaciones y desplazamientos en pavimentos flexibles: UNC, p, 3. Recuperado de https://es.scribd.com/document/399478126/20150506-Metodos-deanalisis-Esfuerzos-deformaciones-desplazamientos-en-pavimentos-flexibles-pdf
- Wikipedia. (s.f). *WIKIPEDIA*, *La enciclopedia libre*. Recuperado de https://es.wikipedia.org/wiki/Ley_de_elasticidad_de_Hooke
- Yoder, E. J. y Witczak, M. W. (1975). Principles of paviment design (Second edition). New York, London, Sydney, Toronto: Printed in the United States of America.